【DQN】使用标准DQN(优化)进行CartPole游戏的经典强化学习训练
By
e2hang
at 2025-09-10 • 0人收藏 • 99人看过
一、无经验回放
先放一个没有经验池(经验回放)的代码
import gymnasium as gym
import random
import torch
import torch.optim as optim
import torch.nn.functional as F
import torch.nn as nn
import time
# 创建环境
#env = gym.make("CartPole-v1", render_mode="human") # human模式会用pyglet显示窗口
env = gym.make('CartPole-v1')
# 重置环境
observation, info = env.reset()
print("初始观察值:", observation)
#记住DQN训练的是Q*,输出的也是Q*,而不是动作,动作要根据Q*判断并反馈
class DQN(nn.Module):
def __init__(self, state_size, action_size):
super(DQN, self).__init__()
self.l1 = nn.Linear(state_size, 128)
self.l3 = nn.Linear(128, 64)
self.l4 = nn.Linear(64, 32)
self.l5 = nn.Linear(32, action_size)
def forward(self, x):
x = F.relu(self.l1(x))
x = F.relu(self.l3(x))
x = F.relu(self.l4(x))
x = self.l5(x)
return x
#定义参数
epsilon = 0.95
state_size = env.observation_space.shape[0]
action_size = env.action_space.n
gamma = 0.99
lrs = 0.005
epsilon_decay = 0.995
epsilon_min = 0.01
batch_size = 64
#memory = deque(maxlen=10000)
num_episodes = 500
#初始化
ez = DQN(state_size, action_size)
optimizer = optim.Adam(ez.parameters(), lr = lrs)
criterion = nn.MSELoss()
#训练
for i in range(500):
state, _ = env.reset() # gym >=0.26 返回 (obs, info)
total_reward = 0.0
done = False
while not done:
# ε-greedy 选择动作
if random.random() < epsilon:
action = env.action_space.sample()
else:
action = ez(torch.tensor(state, dtype=torch.float32)).argmax().item()
# 与环境交互
next_state, reward, terminated, truncated, _ = env.step(action)
done = terminated or truncated
total_reward += reward
# 计算 Q(s, a)
q_values = ez(torch.tensor(state, dtype=torch.float32))
now_Q = q_values[action]
# 计算 target
next_q_value = ez(torch.tensor(next_state, dtype=torch.float32)).max().item()
target_Q = reward + gamma * next_q_value * (0 if done else 1)
# 计算损失
target_Q = torch.tensor(target_Q, dtype=torch.float32)
loss = criterion(now_Q, target_Q)
# 更新网络
optimizer.zero_grad()
loss.backward()
optimizer.step()
# 状态更新
state = next_state
print(f"Episode {i}, total_reward = {total_reward}")
# 测试函数
def test_agent(env, model, episodes=10):
total_rewards = []
for ep in range(episodes):
state, _ = env.reset()
done = False
total_reward = 0.0
while not done:
# 关闭梯度计算,加速
with torch.no_grad():
action = model(torch.tensor(state, dtype=torch.float32)).argmax().item()
next_state, reward, terminated, truncated, _ = env.step(action)
done = terminated or truncated
state = next_state
total_reward += reward
total_rewards.append(total_reward)
print(f"Test Episode {ep+1}: reward = {total_reward}")
avg_reward = sum(total_rewards) / episodes
print(f"Average reward over {episodes} episodes: {avg_reward}")
# 调用测试
test_agent(env, ez, episodes=10)
#最佳数据:平均150这里很明显可以看到,测试的平均reward只有150,学习了,但是学习得很差
二、有经验回放
这里放有经验回放的代码,精髓是deque和随机batch抽取
还有是epsilon - greedy算法,这里epsilon随着训练过程而减小,帮助训练过程收敛
from collections import deque
import numpy as np
import random
import torch
import torch.optim as optim
import torch.nn as nn
import gymnasium as gym
import torch.nn.functional as F
class DQN(nn.Module):
def __init__(self, state_size, action_size):
super(DQN, self).__init__()
self.l1 = nn.Linear(state_size, 128)
self.l2 = nn.Linear(128, 32)
self.l4 = nn.Linear(32, action_size)
def forward(self, x):
x = F.relu(self.l1(x))
x = F.relu(self.l2(x))
x = self.l4(x)
return x
lr = 0.001
gamma = 0.99
epsilon = 1.0
memory = deque(maxlen=1000000)
batch_size = 64
epsilon_decay = 0.995
epsilon_min = 0.01
env = gym.make('CartPole-v1')
state_size = env.observation_space.shape[0]
action_size = env.action_space.n
ez = DQN(state_size, action_size)
optimizer = optim.Adam(ez.parameters(), lr=lr)
criterion = nn.MSELoss()
def replay():
if(len(memory) < batch_size):
return
#随机选一组64个训练
batch = random.sample(memory, batch_size)
states, actions, rewards, next_states, dones = zip(*batch)
states = torch.from_numpy(np.stack(states)) # 直接把 batch 堆成 array 再转 tensor
next_states = torch.from_numpy(np.stack(next_states))
rewards = torch.from_numpy(np.array(rewards, dtype=np.float32))
actions = torch.from_numpy(np.array(actions, dtype=np.int64))
dones = torch.from_numpy(np.array(dones, dtype=np.float32))
q_values = ez(states).gather(1, actions.unsqueeze(1)).squeeze()
next_q_values = ez(next_states).max(1)[0]
target = rewards + gamma * next_q_values * (1 - dones)
loss = criterion(q_values, target.detach())
optimizer.zero_grad()
loss.backward()
optimizer.step()
for e in range(350):
state, _ = env.reset()
done = False
total_reward = 0
while not done:
if random.random() < epsilon:
action = env.action_space.sample()
else:
action = ez(torch.tensor(state, dtype=torch.float32)).argmax().item()
next_state, reward, terminated, truncated, _ = env.step(action)
done = terminated or truncated
# 在存储到 memory 时:
memory.append((np.array(state, dtype=np.float32),
action,
reward,
np.array(next_state, dtype=np.float32),
done))
state = next_state
total_reward += reward
replay()
epsilon = max(epsilon * epsilon_decay, epsilon_min)
print(f"Episode {e + 1}: Reward = {total_reward}")
torch.save(ez.state_dict(), "cartpole_dqn.pth")
print("Model saved to cartpole_dqn.pth")
# 测试函数
def test_agent(env, model, episodes=10):
env = gym.make('CartPole-v1', render_mode='human')
total_rewards = []
for ep in range(episodes):
state, _ = env.reset()
done = False
total_reward = 0.0
while not done:
# 关闭梯度计算,加速
with torch.no_grad():
action = model(torch.tensor(state, dtype=torch.float32)).argmax().item()
next_state, reward, terminated, truncated, _ = env.step(action)
done = terminated or truncated
state = next_state
total_reward += reward
total_rewards.append(total_reward)
print(f"Test Episode {ep+1}: reward = {total_reward}")
avg_reward = sum(total_rewards) / episodes
print(f"Average reward over {episodes} episodes: {avg_reward}")
# 调用测试
test_agent(env, ez, episodes=10)训练结果如下

不过这个版本也是有问题的,没有抑制过拟合(添加噪声等),也没有使用DDQN(目标网络w-)
三、总结
很明显可以感觉到,DQN是十分随机的,很多时候都会有各种情况导致训练无法收敛/过拟合,使用技巧和方法去优化DQN是极为重要的
登录后方可回帖