【DCGAN】失败的对抗生成网络训练(上)
注:本文章的图片可能令人感到不适,请谨慎观看
一、对抗生成网络(Generative Adversarial Network)
整个网络类似一个制作假币集团和警察的对抗,假币集团希望警察不能发现他们的假币,警察希望正确地甄别真币与假币。这里需要引入一些博弈论的知识:Minimax-极大极小博弈理论。
·极大极小平衡点(Minimax Equilibrium)
G(Generator,生成器)输入的是一个随机噪声,输出的一个伪造样本;
D(Detector,检测器)输入的是一个样本,输出的是"D认为这个样本是真的的概率"
对于检测器D,我们希望它对于正确的样本输出1,对于不正确的输出0,那么就应该以这个为目标输出设计梯度下降函数;
LD=− Ex∼pdata[logD(x)] − Ez∼pz[log(1−D(G(z)))]
同理对于生成器G,我们希望它能够欺骗检测器D,那么还是以检测器D对于本样本的输出为基础,我们希望它输出1,那么我们就以1为目标输出设计梯度下降函数
LG=− Ez∼pz[logD(G(z))]
理论存在,实践开始,下面上代码;请注意关注代码中的参数,这对训练来讲至关重要。
重要参数:lr_d, lr_g, n_g_step, real_labels, fake_labels
二、对抗生成网络代码
import os
import torch
import torch.nn as nn
from torchvision import transforms, utils
from torch.utils.data import DataLoader, Dataset
from tqdm import tqdm
import torch.multiprocessing
from PIL import Image # 自定义数据集需要 import PIL
import matplotlib.pyplot as plt
# 判别器
class Detector(nn.Module):
def __init__(self):
super(Detector, self).__init__()
self.model = nn.Sequential(
# 3 x 64 x 64 -> 64 x 32 x 32
nn.Conv2d(3, 64, 4, 2, 1, bias=False),
nn.LeakyReLU(0.2, inplace=True),
# 64 x 32 x 32 -> 128 x 16 x 16
nn.Conv2d(64, 128, 4, 2, 1, bias=False),
nn.BatchNorm2d(128),
nn.LeakyReLU(0.2, inplace=True),
# 128 x 16 x 16 -> 256 x 8 x 8
nn.Conv2d(128, 256, 4, 2, 1, bias=False),
nn.BatchNorm2d(256),
nn.LeakyReLU(0.2, inplace=True),
# 256 x 8 x 8 -> 512 x 4 x 4
nn.Conv2d(256, 512, 4, 2, 1, bias=False),
nn.BatchNorm2d(512),
nn.LeakyReLU(0.2, inplace=True),
# 512 x 4 x 4 -> 1024 x 2 x 2
nn.Conv2d(512, 1024, 4, 2, 1, bias=False),
nn.BatchNorm2d(1024),
nn.LeakyReLU(0.2, inplace=True),
# 1024 x 2 x 2 -> 1 x 1 x 1
nn.Conv2d(1024, 1, 2, 1, 0, bias=False),
nn.Sigmoid()
)
def forward(self, x):
return self.model(x)
# 生成器
class Generator(nn.Module):
def __init__(self, z_dim=100):
super(Generator, self).__init__()
self.model = nn.Sequential(
# z -> 1024 x 4 x 4
nn.ConvTranspose2d(z_dim, 1024, 4, 1, 0, bias=False),
nn.BatchNorm2d(1024),
nn.ReLU(True),
# 1024 x 4 x 4 -> 512 x 8 x 8
nn.ConvTranspose2d(1024, 512, 4, 2, 1, bias=False),
nn.BatchNorm2d(512),
nn.ReLU(True),
# 512 x 8 x 8 -> 256 x 16 x 16
nn.ConvTranspose2d(512, 256, 4, 2, 1, bias=False),
nn.BatchNorm2d(256),
nn.ReLU(True),
# 256 x 16 x 16 -> 128 x 32 x 32
nn.ConvTranspose2d(256, 128, 4, 2, 1, bias=False),
nn.BatchNorm2d(128),
nn.ReLU(True),
# 128 x 32 x 32 -> 3 x 64 x 64
nn.ConvTranspose2d(128, 3, 4, 2, 1, bias=False),
nn.Tanh()
)
def forward(self, z):
return self.model(z)
# 数据集加载(使用自定义路径 ./data/images)
class FlatImageDataset(Dataset):
def __init__(self, root_dir, transform=None):
self.root_dir = root_dir
self.transform = transform
if not os.path.exists(root_dir):
raise FileNotFoundError(f"Dataset directory '{root_dir}' not found. Please create it and add images.")
self.image_files = [f for f in os.listdir(root_dir) if f.lower().endswith(('.png', '.jpg', '.jpeg', '.bmp'))]
if len(self.image_files) == 0:
raise ValueError(f"No valid image files found in '{root_dir}'. Supported: .png, .jpg, .jpeg, .bmp")
self.image_paths = [os.path.join(root_dir, f) for f in self.image_files]
def __len__(self):
return len(self.image_paths)
def __getitem__(self, idx):
img_path = self.image_paths[idx]
image = Image.open(img_path).convert('RGB') # 确保转为 RGB(3 通道)
if self.transform:
image = self.transform(image)
return image, 0 # 返回图像和虚拟标签(GAN 不使用)
# 使用自定义数据集
transform = transforms.Compose([
transforms.Resize(64),
transforms.CenterCrop(64),
transforms.ToTensor(),
transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5))
])
# 加载自定义数据集
dataset = FlatImageDataset(root_dir='./data/images', transform=transform)
print(f"Loaded {len(dataset)} images from ./data/images") # 调试:打印数据集大小
dataloader = DataLoader(dataset, batch_size=64, shuffle=True, num_workers=2) # 减小 num_workers 避免 Windows 问题
# 参数
z_dim = 100
num_epochs = 100 # 6.2w
lr_d = 0.002
lr_g = 0.004
n_g_steps = 2 # 标准 DCGAN是1步G
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
print(f"Using device: {device}")
# 模型与优化器
d = Detector().to(device)
g = Generator(z_dim=z_dim).to(device)
criterion = nn.BCELoss()
optimizer_d = torch.optim.Adam(d.parameters(), lr=lr_d, betas=(0.5, 0.999))
optimizer_g = torch.optim.Adam(g.parameters(), lr=lr_g, betas=(0.5, 0.999))
# 固定噪声用于观察训练过程
z_fixed = torch.randn(64, z_dim, 1, 1, device=device)
# 创建保存目录
os.makedirs("results", exist_ok=True)
# 根据保存的 G dict 生成图片的函数
def generate_from_g_dict(model_path, z_dim=100, num_images=64, output_path='generated.png'):
"""
从保存的生成器 state_dict 文件加载模型,并生成图片保存。
"""
if not os.path.exists(model_path):
print(f"Model path '{model_path}' not found. Skipping generation.")
return
# 加载生成器并恢复权重
g_loaded = Generator(z_dim=z_dim).to(device)
g_loaded.load_state_dict(torch.load(model_path, map_location=device))
g_loaded.eval()
# 生成假图像
with torch.no_grad():
z = torch.randn(num_images, z_dim, 1, 1, device=device)
fake_images = g_loaded(z).detach().cpu()
# 保存图片
utils.save_image(fake_images, output_path, normalize=True, nrow=8)
print(f"Generated images saved to {output_path}")
# 训练循环
def train():
for epoch in range(1, num_epochs + 1):
loss_d_total, loss_g_total = 0, 0
for real_images, _ in tqdm(dataloader, desc=f"Epoch {epoch}/{num_epochs}", leave=False):
real_images = real_images.to(device)
B = real_images.size(0)
# 标签平滑(真实 = 0.9, 假 = 0.0)
real_labels = torch.full((B, 1, 1, 1), 0.9, device=device)
fake_labels = torch.full((B, 1, 1, 1), 0.1, device=device)
# 生成假图像
z = torch.randn(B, z_dim, 1, 1, device=device)
fake_images = g(z)
# 判别器训练
output_real = d(real_images)
output_fake = d(fake_images.detach())
loss_real = criterion(output_real, real_labels)
loss_fake = criterion(output_fake, fake_labels)
loss_d = loss_real + loss_fake
optimizer_d.zero_grad()
loss_d.backward()
optimizer_d.step()
# 生成器训练(标准 BCE)
for _ in range(n_g_steps):
#每次生成器更新前重新生成假图像
z = torch.randn(B, z_dim, 1, 1, device=device)
fake_images = g(z)
output = d(fake_images)
loss_g = criterion(output, real_labels) # 欺骗 D:希望 D 输出真
optimizer_g.zero_grad()
loss_g.backward()
optimizer_g.step()
loss_g_total += loss_g.item()
loss_d_total += loss_d.item()
# 平均损失(G 损失已累加 n_g_steps 次)
avg_loss_d = loss_d_total / len(dataloader)
avg_loss_g = loss_g_total / (len(dataloader) * n_g_steps) # 修复:除以总 G 步数
print(f"Epoch [{epoch}/{num_epochs}] Loss_D: {avg_loss_d:.4f} Loss_G: {avg_loss_g:.4f}")
loss_history = {"D": [], "G": []}
# 每轮结束时:
loss_history["D"].append(avg_loss_d)
loss_history["G"].append(avg_loss_g)
# 最后画图:
plt.plot(loss_history["D"], label="Loss_D")
plt.plot(loss_history["G"], label="Loss_G")
plt.legend()
plt.savefig("results/loss_curve.png")
# 每2轮保存一次生成图像和 G 的 state_dict
if epoch % 2 == 0:
with torch.no_grad():
fake = g(z_fixed).detach().cpu()
utils.save_image(fake, f"results/epoch_{epoch}.png", normalize=True, nrow=8)
# 保存 G 的 state_dict(dict 形式)
g_state_dict_path = f"results/g_epoch_{epoch}.pth"
torch.save(g.state_dict(), g_state_dict_path)
print(f"Generator state_dict saved to {g_state_dict_path}")
if __name__ == "__main__":
torch.multiprocessing.freeze_support()
train()
#for i in range(100):
#text = 'results/generated_after_train' + str(i) + '.png'
#generate_from_g_dict('results/g_epoch_85.pth', output_path=text)展示一部分训练集(64x64像素),一共6.3w条训练图像

好的,那么代码写出来了,运行起来会是什么样子的呢?
三、训练期间的产出图片(图片可能令人不适)
第5次循环/共100次循环

第10次循环/共100次循环

第15次循环/共100次循环

第20次循环/共100次循环(初见端倪)

第25次循环/共100次循环

第30次循环/共100次循环

第35次循环/共100次循环(???)

第40次循环/共100次循环

第45次循环/共100次循环(何意味)

第50次循环/共100次循环

第55次循环/共100次循环(哎呦我)

第60次循环/共100次循环(?????)

第65次循环/共100次循环

第70次循环/共100次循环(此处更改了参数)
lr_d = 0.001, lr_g = 0.002, fake_labels的fill变成了0.0

第75次循环/共100次循环

第80次循环/共100次循环

第85次循环/共100次循环(最正常的一集)

第90次循环/共100次循环

第95次循环/共100次循环

第100次循环/共100次循环

后面我用第85次的保存过的模型输出了100张图,请仔细观察下面这张很有代表性的图

这个图很有代表性,左下角的6个图,只有略微的变化,大的形态上没有本质区别。其他生成的角色呢?也一样,就是这么几个人来回变。
好的,相信我们聪明的读者一定很容易发现问题吧!
四、原因分析
这就是 典型的 GAN 模式崩溃(Mode Collapse)。简单来说, Generator 学到了只生成几个样本的特定模式,哪怕加上一点随机噪声,输出还是那几个脸,只是微调了位置、颜色、亮度等。
1️⃣ 原因
模式崩溃(Mode Collapse)
GAN 的训练是对抗的:G 想骗 D,D 想识别真伪。
如果 D 太强,G 找到“骗过 D 的最快方式” → 就学会重复生成几个样本。
结果就是你看到的:总是几个固定人脸,变化很小。
生成器容量限制 / 初始化问题
如果 G 层数、通道数不够,或者初始化不好,容易陷入局部最优。
训练超参数不合理
学习率太高、n_g_steps>1 或标签过于极端 → 梯度不稳定,G 过快收敛到少数模式。
数据多样性不足
如果训练的数据集本身种类不够丰富,G 更容易崩溃到几个样本。
2️⃣ 解决方案
降低学习率 / 调整更新比
DCGAN 官方推荐:lr=0.0002,D:G = 1:1。
之前 n_g_steps=2 → 改回 1 会更稳定。
标签平滑
real_labels = 0.9 fake_labels = 0.0
避免 D 太快收敛。
非饱和损失
loss_g = -torch.mean(torch.log(d(fake_images) + 1e-8))
可以缓解梯度消失,让 G 更新更稳定。
增加数据集多样性
数据集越多样,G 学到的模式越丰富。
正则 / 初始化
def weights_init(m):
classname = m.__class__.__name__
if classname.find('Conv') != -1 or classname.find('ConvTranspose') != -1:
nn.init.normal_(m.weight.data, 0.0, 0.02)
elif classname.find('BatchNorm') != -1:
nn.init.normal_(m.weight.data, 1.0, 0.02)
nn.init.constant_(m.bias.data, 0)
g.apply(weights_init)
d.apply(weights_init)避免竖条和特定模式的偏置。
尝试不同 GAN 结构
WGAN-GP、LSGAN 或 StyleGAN 更适合稳定生成,减少模式崩溃。
登录后方可回帖
炼丹名不虚传
