``` cpp A 任务排序 分数 30 作者 朱允刚 单位 吉林大学 一个工程被分解成n个子任务,编号为0至n-1。要完成整个工程需要完成所有的子任务。其中一些子任务必须先于另外一些子任务被完成。给定各子任务之间的先后关系,请编写程序给出一个合理的任务完成顺序,若工程不可行,程序亦能识别。 输入格式: 输入第一行为两个整数n和e,均不超过100。n表示子任务数。接下来e行,表示已知的两个子任务间的先后关系,每行为两个整数a和b,表示任务a必须先于任务b完成。 输出格式: 若工程不可行(一些子任务以自己为先决条件),输出“unworkable project”;若工程可行,输出为1行整数,每个整数后一个空格,为n个子任务的编号,表示子任务的完成顺序,如果有多种可能的顺序,则输出字典序最小者。 注:字典序,即对象在字典中的顺序。对于两个数字序列,从第一个数字开始比较,当某一个位置的数字不同时,该位置数字较小的序列,字典序较小,例如1 2 3 9比1 2 4 5小,1 2 8 9比1 2 10 3小。 输入样例1: 3 2 0 1 1 2 输出样例1: 0 1 2 输入样例2: 3 3 0 1 1 2 2 0 输出样例2: unworkable project 代码长度限制 16 KB 时间限制 50 ms 内存限制 64 MB 栈限制 8192 KB --- B 关键路径 分数 30 作者 朱允刚 单位 吉林大学 假定一个工程由若干子任务构成,使用一个包含n个顶点、e条边的AOE网表示该工程,顶点编号为1至n,有向边表示该工程的每个子任务,边的权值表示完成该子任务所需的时间,假定网中只含一个源点和一个汇点。请编写程序求出该工程的所有关键活动,并计算完成该工程所需的最短时间。 输入格式: 每个测试点包含多组测试数据。每组数据第一行为2个整数n和e,均不超过200,分别表示AOE网的顶点数和边数。接下来e行表示每条边的信息,每行为3个正整数a、b、c,其中a和b表示该边的端点编号,c表示权值。各边并不一定按端点编号顺序排列,且各顶点并不一定按拓扑序排列。 输出格式: 对每组数据,若工程不可行(AOE网中存在环),输出“unworkable project”;若工程可行,则输出第一行为完成工程所需的最短时间,并从第2行开始输出关键活动,每个关键活动占一行,格式为i->j,其中i和j表示关键活动所在边的端点编号。各关键活动输出顺序为:按i的递增顺序输出,若多个关键活动的i值相同,则按j的递增顺序输出。 输入样例: 4 4 1 2 6 1 3 4 2 4 1 3 4 1 输出样例: 7 1->2 2->4 代码长度限制 16 KB 时间限制 100 ms 内存限制 64 MB 栈限制 8192 KB --- C 最少点字典序最短路径 分数 40 作者 朱允刚 单位 吉林大学 给定一个正权有向图,图中包含n个顶点,编号为0至n-1。以顶点0作为源点,请编写程序求顶点0到各顶点的最短路径。若顶点0到某顶点存在多条最短路径,则输出经过顶点最少的那条路径,例如图1(a)中0到4的经过顶点最少的最短路径为0 - 3 - 4。若存在多条最短路径且其经过顶点个数相等,则输出字典序最小者。例如图1(b)中0到5的满足条件的最短路径为0 - 2 - 5。 g.jpg 注:字典序,即对象在字典中的顺序。对于两个数字序列,从第一个数字开始比较,当某一个位置的数字不同时,该位置数字较小的序列,字典序较小,例如1 2 3 9比1 2 4 5小,1 2 8 9比1 2 10 3小。 输入格式: 输入第一行为两个正整数n和e,分别表示图的顶点数和边数,其中n不超过20000,e不超过20000。接下来e行表示每条边的信息,每行为3个非负整数a、b、c,其中a和b表示该边的端点编号,c表示权值。各边并非按端点编号顺序排列。 输出格式: 输出为若干行由“->”间隔的数字序列,每行为源点0到某顶点的满足条件的最短路径,如源点到某顶点无最短路径,则不输出该条路径。各条路径按终点的递增顺序输出,源点到源点的最短路径无需输出。 输入样例: 6 7 0 1 1 1 4 2 4 5 3 0 3 4 3 5 2 0 2 5 2 5 1 输出样例: 0->1 0->2 0->3 0->1->4 0->2->5 代码长度限制 16 KB 时间限制 500 ms 内存限制 20 MB 栈限制 8192 KB