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DiffusionModels (DMs), as a leading class of generativemodels, offer key advantages for reinforcement learning
(RL), includingmulti-modal expressiveness, stable training, and trajectory-level planning. This survey delivers a
comprehensive and up-to-date synthesis of diffusion-based RL.We first provide an overview of RL, highlighting
its challenges, and then introduce the fundamental concepts of DMs, investigating how they are integrated
into RL frameworks to address key challenges in this research field. We establish a dual-axis taxonomy that
organizes the field along two orthogonal dimensions: a function-oriented taxonomy that clarifies the roles DMs
play within the RL pipeline, and a technique-oriented taxonomy that situates implementations across online
versus offline learning regimes. We also provide a comprehensive examination of this progression from single-
agent to multi-agent domains, thereby forming several frameworks for DM-RL integration and highlighting
their practical utility. Furthermore, we outline several categories of successful applications of diffusion-based RL
across diverse domains, discuss open research issues of current methodologies, and highlight key directions for
future research to advance the field. Finally, we summarize the survey to identify promising future development
directions. We are actively maintaining a GitHub repository (https://github.com/ChangfuXu/D4RL-FTD) for
papers and other related resources to apply DMs for RL.
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1 Introduction
1.1 Background
Diffusion Models (DMs) have recently emerged as a highly influential class of generative models,
attracting widespread attention across the machine learning community [1, 2]. Originally developed
for high-quality data generation tasks such as image and video synthesis [3], DMs are generative
denoising processes that learn to reverse a stepwise corruption of data, enabling the generation of
realistic data samples. Compared to earlier generative approaches such as Variational Autoencoders
(VAEs) [4] and Generative Adversarial Networks (GANs) [5], DMs offer notable advantages in
producing high-fidelity samples and ensuring greater training stability. As a result, the versatility
and potency of DMs have been demonstrated in a broad range of application areas, as shown in
Fig. 1, including Computer Vision (CV) [3, 6], Natural Language Processing (NLP) [7, 8], audio
generation [9, 10], and particularly in sequential decision-making [11–15].
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Fig. 1. The number of published papers by searching ”Diffusion Model” in Web of Science (Access date:
June 23, 2025). Diffusion models have garnered significant attention in both research and industry fields,
particularly over the last two years.

Reinforcement Learning (RL) has been widely applied to various domains, such as robot control
[16], autonomous driving [17], and task scheduling [18]. The fundamental goal of RL is to learn
a policy that maps observations or states to actions, thereby maximizing the cumulative reward
over time. Furthermore, RL, combined with Deep Neural Networks (DNNs), has been formulated
into Deep Reinforcement Learning (DRL). The power of DRL stems from its ability to learn directly
from high-dimensional sensory inputs, such as images and raw sensor data, without requiring
hand-engineered features. This end-to-end learning paradigm allows DRL agents to discover intri-
cate patterns and optimal control policies that might be difficult or impossible to define manually.
It includes two categories of methods: (1) value-based methods, including Deep Q-value Network
(DQN) [19], Double DQN [20], and Dueling DQN [21]; and (2) policy-based methods based on
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Fig. 2. Overview of DMs for RL. DMs pretrained on broad data are adapted to accomplish specific tasks by
making actions, interacting with external entities, and receiving feedback.

the Actor-Critic framework, including stochastic policy gradient methods: Trust Region Policy
Optimization (TRPO) [22] and Proximal Policy Optimization (PPO) [23], and deterministic policy
gradient methods [24]: Deep Deterministic Policy Gradient (DDPG) [25], Twin Delayed Deep
Deterministic (TD3) [26], and Soft Actor-Critic (SAC) [27]. DRL has significantly broadened the
scope of sequential decision-making, enabling its application to complex, large-scale problems.
Despite these advancements, DRL methods still face several critical limitations. First, DRL methods
often suffer from sample inefficiency, as their policy learning frequently requires a large number of
interactions with the environment. Second, many DRL algorithms depend on stochastic sampling
from unimodal distributions (e.g., Gaussians), which may inadequately capture complex or multi-
modal action spaces [28]. Third, several challenges, such as bootstrapping errors, off-policy learning
complications, and high sensitivity to hyperparameters, can hinder the convergence of DRL models
[29]. Fourth, conventional RL approaches typically model policies as direct state-to-action mappings,
which can oversimplify the decision-making process and restrict representational capacity.

1.2 Motivation
In response to these limitations, DMs have recently been applied to optimize RL techniques. They
have shown strong performance in offline trajectory modeling, planning, and goal-conditioned
control, with a particular focus on DRL, as illustrated in Fig. 2. A representative example is Diffuser
[13], which leverages a DM to learn trajectory distributions from offline datasets and performs
goal-directed planning through guided sampling. Building on this foundation, numerous subsequent
works have integrated DMs into various components of the RL pipeline [30, 31]. For instance, the
DM is used to replace conventional Gaussian policies [32], augment experience data [33], or extract
latent skill representations [34]. These methods have demonstrated strong performance across
a range of applications, including multitask RL [35], Imitation Learning (IL) [36], and trajectory
generation [37]. Most notably, the expressive and flexible distribution modeling capacity of DMs
offers promising solutions to several long-standing challenges in RL, such as effective exploration,
policy expressiveness, and planning under uncertainty. Therefore, when these DMs are applied to
RL, they can model the entire trajectory of states and actions as a sample from a learned distribution,
rather than predicting actions one step at a time, offering several compelling advantages as follows:

• Improved Exploration. DMs can naturally represent complex, multimodal action or tra-
jectory distributions to enable the generation of more diverse behavior, thus improving
exploration [13].
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• Trajectory-level Reasoning. Instead of selecting actions incrementally, diffusion-based
policies can generate full sequences conditioned on task objectives, enabling better long-term
planning [11].
• Stability and Generalization. The denoising diffusion process-based training paradigm
often results in smoother optimization landscapes and better generalization, especially in
offline RL settings [29].
• Compatibility with RL. DMs can produce effective policies based on the training of fixed
datasets, addressing the distribution shift and extrapolation errors that plague traditional RL
algorithms [38].

As a result, a new class of diffusion-based decision-making models, such as Diffuser [13], Decision
Diffuser [11], and Deep Diffusion-based SAC (D2SAC) [14], has emerged, showing strong empirical
performance across a range of sequential decision-making benchmarks. These models blend the
strengths of generative modeling with decision optimization, opening new avenues for robust,
efficient, and expressive policy learning.

Table 1. Summary of survey papers on DMs with different applications.

Survey Contribution Emphasis

[39] Present the fundamental formulation of DMs, algorithmic en-
hancements, and the manifold applications of DMs

General review of DMs to provide
advanced and comprehensive
insights into diffusion and elucidate
the DM’s developmental trajectory
and future directions.

[40]
Provide a contextualized, in-depth look at the state of DMs, iden-
tifying the key areas of focus and pointing to potential areas for
further exploration

[41] Provide a comprehensive review of DMs applied in vision, com-
prising both theoretical and practical contributions in the field The applications of DMs on CV,

illustrating the current limitations of
DMs and promising some interesting
directions for future research.

[42] Discuss the DMs applied in image generation from text

[43] Present the most recent advances in DMs for vision from their
computational efficiency viewpoint

[44] Review the research results of DMs in the field of NLP from text
generation, text-driven image generation, and other four aspects The applications of DMs on NLP to

investigate a comprehensive review
of the use of DMs in NLP and
explore further permutations of
integrating Transformers into DMs

[45] Discusses the different formulations of DMs used in NLP, their
strengths and limitations, and their applications

[46] Review the recent progress in DMs for non-autoregressive text
generation and the optimization techniques for text data

[47] Provide the recent progress of diffusion-based speech synthesis

[48]
Provide an overview of the applications of DMs in bioinformatics
to aid their further development in bioinformatics and computa-
tional biology

The applications of DMs in bioin-
formatics

[48]
Present a survey on DMs for recommendation, and draw a bird’s-
eye view from the perspective of the whole pipeline in real-world
recommender systems

The applications of DMs on recom-
mender systems

[49] Provide a comprehensive tutorial on the intelligent network opti-
mization with DMs

The applications of DMs on net-
work optimization
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1.3 Contribution
Although several surveys on DMs exist as summarized in Table 1, they either offer broad overviews
(e.g., [39] and Yang et al. [40]) or focus on specific domains such as CV (e.g., [41] and [42]) or
NLP (e.g., [44] and [45]), leaving a gap in the comprehensive understanding of DMs for decision-
making optimization. This survey seeks to bridge these gaps by systematically reviewing recent
advances, categorizing key approaches, and highlighting existing challenges and future research
directions. Our aim is to provide researchers and practitioners with a clear, structured, and up-
to-date overview of this rapidly evolving field. Furthermore, while diffusion-based RL methods
have also been explored in [28], they differ significantly in scope, methodology, and objectives.
Specifically, compared with [28], this survey: 1) presents a comprehensive review of diffusion-based
RL, covering the background, challenges, integration strategies, and current research trends in
various domains, such as robotics, autonomous driving, edge computing, and more; 2) introduces
a systematic taxonomy and structure, outlining representative works and applications; 3) looks
into architectural and sampling issues specific to DMs in RL and discusses the value function roles
of DMs in both single-agent RL and multi-agent RL, as well as online RL and offline RL from the
perspective of technique taxonomy; 4) summarize recent advances, applications, and promotions
of the diffusion-based RL methods in various fields; 5) highlights open issues and maps out future
research prospects and emerging topics that are less thoroughly discussed in the earlier survey.
The contributions of our survey are listed below:

• We provide a comprehensive tutorial on RL with DMs. This tutorial presents a comprehensive
understanding of the origin, development, and key strengths of DMs, and outlines the role of
DMs across various historical periods in RL techniques.
• We classify the roles of DMs in RL into six categories: diffusion-based trajectory optimization,
diffusion-based policy learning, diffusion-based IL, diffusion-based exploration augmenta-
tion, diffusion-based environmental simulation, and diffusion-based reward model. We also
present the basic problem formulations of these six categories and depict the general solution
framework for these six problems regarding the integration of DMs into RL. These studies
provide a comprehensive review of the DMs for RL.
• We have an in-depth look at DM for RL from a single-agent to multi-agent perspective,
including both the DMs for single-agent RL and multi-agent RL from the perspective of
function taxonomy, as well as the DMs for offline RL and online RL from the perspective of
technique taxonomy, demonstrating the practicality and efficacy of the DMs for RL.
• We summarize recent advances and promotions in RL with DMs for various applications,
such as robotics, autonomous driving, and edge computing, and discuss potential directions
for DMs research and applications, providing insights into how DMs can evolve and continue
to influence future RL technology in modern applications.

As shown in Fig. 3, the remainder of this survey is organized as follows: Section 2 first presents an
overview of RL and then discusses the challenges in RL. Section 3 revisits the foundational concept
of the DM and its key variants. Section 4 discusses the DMs for single-agent RL and multi-agent
RL from the perspective of function taxonomy. Section 5 further discusses DMs for online RL and
offline RL from the perspective of technique taxonomy. Section 6 describes recent advances and
applications of the diffusion-based RL method. Section 7 further analyzes open research issues and
promising directions. The last Section 8 summarizes the survey with some concluding remarks.

2 Overview and Challenges of RL
In this section, we provide an overview of RL and briefly discuss several challenges of RL.
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Fig. 3. The taxonomy of this survey. We provide a comprehensive overview of the current research landscape
at the intersection of DMs and RL by systematically analyzing this emerging field’s progress, challenges,
solutions, and opportunities.

2.1 Overview of RL
In these settings, an agent must interact with an environment to achieve long-term objectives by
executing a sequence of actions. This section provides an overview of key modeling frameworks,
including Markov Decision Processes (MDPs), Partially Observable MDPs (POMDPs), and the major
learning paradigms of single-agent RL and multi-agent RL.

2.1.1 Markov Decision Processes. The MDP is the standard framework for RL in fully observable
stochastic environments, as shown in Fig. 4. Formally, an MDP is defined by the tuple (S,A, 𝑃, 𝑟, 𝛾),
where:
• S is the state space,
• A is the action space,
• 𝑃 (𝑠′ |𝑠, 𝑎) defines the state transition dynamics,
• 𝑟 (𝑠, 𝑎) denotes the reward function,
• 𝛾 ∈ [0, 1) is the discount factor.

The goal is to learn a policy 𝜋 (𝑎 |𝑠) that maximizes the expected cumulative discounted reward
J (𝜋):

J (𝜋) = E𝜋

[∑︁∞
𝑡=0

𝛾𝑡𝑟 (𝑠𝑡 , 𝑎𝑡 )
]
. (1)

Here, classical methods such as value iteration and policy iteration [50, 51] can solve small-scale
MDPs, but they struggle with scalability in large or continuous spaces.
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Fig. 4. Framework of Markov decision process. By observing the current system state S𝑡 and reward 𝑟𝑡−1,the
agent generates an action A𝑡 . Then, by performing the A𝑡 , the reward 𝑟𝑡 and next system state S𝑡+1 will be
obtained from the environment. Finally, the S𝑡+1 and S𝑡+1 are inputted to the agent to generate the next
action A𝑡+1.

2.1.2 Partially Observable MDPs. In real-world environments, agents often operate under uncer-
tainty and cannot directly observe the true underlying state of the environment. This scenario is
effectively modeled using POMDPs.

A POMDP is formally defined as a tuple:

M = (S,A,O, 𝑃, 𝑅,𝑂,𝛾) (2)

where:
• S: Set of latent environment states.
• A: Set of possible actions.
• O: Set of possible observations received by the agent.
• 𝑃 (𝑠′ |𝑠, 𝑎): State transition probability function, describing the probability of transitioning to
state 𝑠′ given current state 𝑠 and action 𝑎.
• 𝑟 (𝑠, 𝑎): Reward function, specifying the expected reward for taking action 𝑎 in state 𝑠 .
• 𝑂 (𝑜 |𝑠′): Observation model, defining the probability of receiving observation 𝑜 in the system
state 𝑠′.
• 𝛾 ∈ [0, 1): Discount factor, representing the preference for immediate rewards over future
rewards.

Unlike in fully observable MDPs, the agent in POMDPs does not have direct access to the state
𝑠 , and must instead rely on partial observations 𝑜 ∈ O. To make decisions, the agent typically
maintains a belief state 𝑏 (𝑠), which is a probability distribution over possible states, updated based
on action-observation histories using Bayes’ rule.

Due to the continuous and high-dimensional nature of the belief space, solving POMDPs exactly
is computationally intractable in most practical settings. This motivates the use of RL to enable
tractable decision-making under partial observability [52]. RL algorithms learn optimal policies via
trial-and-error interaction with the environment, receiving feedback through rewards. Furthermore,
RL can be categorized into single-agent RL and multi-agent RL approaches.

2.1.3 Single-agent RL. In the standard single-agent RL setting, the interaction between an agent
and the environment can be modeled as an MDP, defined by a tuple (S,A, 𝑃, 𝑟, 𝛾) (see the above
Section 2.1.1).

Over the years, many algorithms have been proposed for single-agent RL, spanning from value-
based methods to policy optimization techniques. The single-agent RL approach usually has two
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types: model-free and model-based. The model-free methods (e.g., DQN [19], PPO [23], SAC
[27]) learn value functions or policies directly. In contrast, the model-based methods attempt to
learn a transition model and use planning techniques to derive policies [53]. Some representative
approaches include:
• Q-learning [54]: A model-free, off-policy algorithm that learns the optimal action-value
function using temporal-difference updates.
• DQN [19]: Extends Q-learning using deep neural networks as function approximators and
experience replay to enable learning from high-dimensional state spaces (e.g., images).
• Policy Gradient (PG) [55]: Directly optimizes the policy by estimating gradients of expected
returns, suitable for continuous action spaces.
• PPO [23]: A stable and efficient on-policy algorithm that clips policy updates to avoid large
deviations, widely adopted in practice.
• SAC [27]: A maximum entropy RL algorithm that trades off reward maximization and policy
entropy, achieving strong performance in continuous control tasks.
• Actor-Critic Methods [56]: Combines policy (actor) and value function (critic) learning to
reduce variance in policy gradients while maintaining low bias.

These methods form the core of modern RL research and serve as baselines for extensions to
more complex scenarios, such as hierarchical RL, offline RL, and multi-agent RL.

2.1.4 Multi-agent RL. Multi-agent RL extends the traditional RL framework to environments
that involve multiple agents interacting with POMDPs. In multi-agent RL, the environment
is modeled as a Markov Game (also known as a Stochastic Game), defined by a tuple G =

(N ,S, {A𝑖 }𝑖∈N, 𝑃, {𝑅𝑖 }𝑖∈N, 𝛾), where:
• N = {1, 2, . . . , 𝑁 }: the set of agents.
• S: the shared state space.
• A𝑖 : the action space of agent 𝑖 .
• 𝑃 (𝑠′ |𝑠, a): the transition function with joint action a = (𝑎1, 𝑎2, . . . , 𝑎𝑁 ).
• 𝑅𝑖 (𝑠, a): the reward function for agent 𝑖 .
• 𝛾 ∈ [0, 1): the discount factor.

Each agent 𝑖 aims to learn a policy 𝜋𝑖 (𝑎𝑖 |𝑜𝑖 ) based on its observation 𝑜𝑖 to maximize its own
expected cumulative reward:

J𝑖 (𝜋𝑖 ) = E𝜋1,...,𝜋𝑁

[∑︁∞
𝑡=0

𝛾𝑡𝑅𝑖 (𝑠𝑡 , a𝑡 )
]
. (3)

In such settings, each agent learns a policy to maximize its own expected cumulative reward,
often in the presence of other learning agents. This interaction leads to non-stationarity from the
perspective of any single agent, introducing challenges such as instability, policy co-adaptation,
and partial observability. Multi-agent RL is widely applied in domains like autonomous driving,
swarm robotics, smart grids, and collaborative control. Moreover, many representative multi-agent
RL methods have been proposed to tackle these challenges:
• Independent Q-Learning (IQL) [57]: Treats each agent as an independent learner using
standard Q-learning, which may suffer from instability due to non-stationarity.
• Multi-agent DDPG [58]: Utilizes centralized training with decentralized execution, where a
centralized critic observes the global state and all agents’ actions to improve training stability.
• Value Decomposition Networks (VDN) [59]: Decomposes a global joint action-value
function into a summation of individual agent value functions, facilitating cooperative
behavior learning.
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• QMIX [60]: Extends VDN by learning a monotonic mixing network to combine individual
Q-values into a joint Q-value, enabling more expressive coordination mechanisms.
• Multi-agent PPO [61]: Adapts the PPO framework to the multi-agent setting using a cen-
tralized critic for each agent, balancing exploration and stability.
• Hierarchical and Policy Factorization Methods [62, 63]: Introduce structured policy
representations and hierarchical learning to enable efficient credit assignment and long-
horizon planning.

Recent multi-agent RL research trends include decentralized training, graph-based interaction
modeling, multi-agent communication protocols, and the integration of large-scale pre-trained
models for generalization. However, despite their effectiveness, RL methods often struggle with
sample inefficiency and unstable convergence, particularly in complex environments or those with
sparse rewards.

2.2 Challenges of RL
Sequential decision-making aims to find optimal strategies over time, typically formalized through
frameworks such as MDPs and POMDPs. While MDPs assume full observability of the environment
state, POMDPs extend the formulation to scenarios with uncertainty and incomplete observations.
On top of these models, RL and IL offer complementary paradigms for policy acquisition. However,
both traditional frameworks face critical challenges in real-world applications:

2.2.1 Sample Inefficiency. RL methods often require an extensive number of interactions with the
environment to converge to satisfactory policies, particularly in high-dimensional or sparse-reward
settings. This sample inefficiency limits their practicality in domains where interactions are costly
or time-consuming, such as robotics, healthcare, or financial systems. IL methods can reduce the
reliance on exploration by learning from expert demonstrations, yet they frequently struggle with
generalization beyond the demonstration distribution, leading to compounding errors over time.

2.2.2 Training Instability. Many RL algorithms or models, such as DQN, PPO, and SAC, rely on
complex optimization strategies involving off-policy learning, bootstrapping, and target networks.
These mechanisms introduce non-stationarity in the dynamic learning process, making training
highly sensitive to hyperparameters and prone to instability. For example, small variations in
learning rate, exploration parameters, or reward scaling can also cause significant performance
degradation or even learning collapse.

2.2.3 Exploration Limitations. Exploration strategies in RL often rely on simple stochastic pertur-
bations (e.g., Gaussian noise or epsilon-greedy actions), which are insufficient in environments
with deceptive rewards or multimodal action distributions. Consequently, agents may become
trapped in local optima, failing to discover more optimal behaviors. This issue is exacerbated in
environments with long time horizons or hierarchical task structures.

2.2.4 Partial Observability and Uncertainty. In many realistic scenarios, agents operate under
partial observability, where only a subset of the true environmental state is accessible. While
POMDPs provide a principled approach to modeling such settings, solving them is computationally
intractable in most real-world applications. RL algorithms adapted for partial observability (e.g.,
those using recurrent policies) often suffer from performance degradation due to noisy observations
and ambiguity in state estimation.

2.2.5 Poor Generalization and Transferability. Policies learned through RL or IL are typically
tailored to the specific training environment and may not generalize well to unseen states or
altered dynamics. This poses a significant barrier in real-world applications, where variations in
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environmental conditions are common. Moreover, models trained in simulation environments often
experience a severe drop in performance when transferred to the real world.

2.2.6 Rigid Policy Representations. Conventional RL policies are usually parameterized as deter-
ministic or stochastic mappings from states to actions. While effective in simple scenarios, these
representations may lack the expressiveness required to capture diverse, multimodal behavior pat-
terns. This rigidity hinders the ability to model uncertainty and to represent conditional strategies
based on long-term planning or multiple behavioral modes.

3 Foundations of DMs
DMs, as a type of generative model, have recently gained significant traction due to their ability to
generate high-fidelity samples in complex data domains such as images, audio, and trajectories.
At their core, DMs operate by learning to reverse a gradually applied noising process, thereby
transforming random noise into structured data. This section provides a concise overview of the
formulation of DMs, including the original Denoising Diffusion Probabilistic Model (DDPM) [3]
and key variants that improve sampling efficiency and flexibility.

3.1 History of DMs
DMs, also known as DDPMs, have rapidly emerged as a powerful class of generative models. The
foundational idea behind DMs is to learn the inverse of a gradual noising process, enabling the
generation of complex data distributions from pure noise. This approach was first proposed by [64],
who introduced a probabilistic framework that interprets data generation as a Markovian reverse
diffusion process. The technical roadmap of DM development consists of two routes, as shown in
Fig. 5.

AE

(1986, Nature)

VAE

(2014, ICLR)

VQ-VAE

(2017, NeurIPS)

DDPM

(2020, NeurIPS)

 DDIM、CTDM、
GSDM

LDM

 (2022, CVPR)

Technical route 1

Technical route 2

Variants

Fig. 5. The technical roadmap of DM development. There are technical routes: 1) From Autoencoder (AE),
Vector Autoencoder (VAE), and DDPM to DDIM, CTDM, and GSDM; 2) From AE and Vector Quantised-
Variational Autoencoder (VQ-VAE) to Latent Diffusion Model (LDM).

3.1.1 Technical Route 1. The DMdevelopment can be traced back to the Autoencoder (AE) proposed
by Van et al. in 1986 [65]. AE is an early image generation model that utilizes the Encoder-Decoder
architecture; however, it suffers from issues of overfitting and poor image reproduction quality. VAE
[4] introduces distribution learning on the basis of AE, which alleviates the overfitting phenomenon,
but the generated image is still blurry. Subsequently, Ho et al. [3] propose the DDPM published
on the NeurIPS conference in 2020 [3]. The DDPM framework demonstrates that high-quality
image synthesis could be achieved using a simple Gaussian noise schedule and a denoising network
trained with a reweighted variational bound. This work sparks renewed interest in DMs and leads
to substantial performance improvements across various modalities, becoming the foundation of
DMs. However, DDPM is computationally expensive and slower to generate. Afterward, several
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improvements and variants of the original DDPM have been proposed to address issues related to
sampling speed, flexibility, and continuous-time modeling. The most notable variants include De-
noising Diffusion Implicit Models (DDIMs), Continuous-Time DMs (CTDMs), and Guided Sampling
DMs (GSDMs) [28].

3.1.2 Technical Route 2. On the other hand, Van et al. [65] propose a simple but powerful gen-
erative model, i.e., Vector Quantised-Variational AutoEncoder (VQ-VAE), to address the issue of
AE overfitting. A significant contribution of the VQ-VAE is that it substantially reduces compu-
tational costs by compressing images into compact, discrete representations. Then, inspired by
this advantage, the Latent Diffusion Model (LDM) [66] is proposed to further optimize generation
efficiency and quality by combining the latent space compression of VQ-VAE with the diffusion
denoising process of DDPM, achieving state-of-the-art performance in the field of image generation.
LDM also introduces a conditioning module for multimodal information processing, making the
generation process more flexible.

The growing interest in diffusion-based generative modeling for temporal and decision-making
tasks has led to a new research frontier where DMs are being integrated into online and offline
RL, IL, and multi-agent systems. This evolution marks a significant shift in how generative models
contribute to solving complex planning and control problems.

3.2 Denoising Diffusion Probabilistic Model
The DDPM [3] represents the standard formulation of DMs, using a fixed forward process and a
learned reverse process for sample generation. A DDPM typically consists of two components:
a forward diffusion process that incrementally adds noise to input data, and a reverse denoising
process that learns to invert this degradation. The basic progress of DMs is shown in Fig. 6.

xT pθ (xt-1|xt)

q (xt|xt-1)

... ...

xt xt-1 x0

Reverse (denoising) process

Forward (add noise) process

Fig. 6. Progress of DMs. Given a target probability distribution x0, the forward process adds a sequence of
Gaussian noises at each step to obtain x1, x2, ..., x𝑇 . The reverse process, also called the denoising process,
infers the target x0 from a noise sample x𝑇 ∼ N(0, I) by removing noise.

3.2.1 Forward Process. In the forward process of the DM, a data point x0 ∼ 𝑞(x0) is gradually
perturbed through a sequence of𝑇 steps using a fixed Markov chain. At each step 𝑡 , Gaussian noise
is added according to a schedule:

𝑞(x𝑡 |x𝑡−1) =N(x𝑡 ;
√︁

1 − 𝛽𝑡x𝑡−1, 𝛽𝑡 I), (4)
where 𝛽𝑡 ∈ (0, 1) is the noise variance at time step 𝑡 . After 𝑇 steps, the data is effectively destroyed,
and x𝑇 ∼ N(0, I) approximates standard Gaussian noise.

3.2.2 Reverse Process. The reverse process of the DM is parameterized by a neural network 𝜽 that
learns to reverse the diffusion and reconstruct x0 from noisy samples. The generative model defines
a distribution:

𝑝𝜃 (x𝑡−1 |x𝑡 ) =N(x𝑡−1; 𝜇𝜃 (x𝑡 , 𝑡), Σ𝜃 (x𝑡 , 𝑡)), (5)
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which is trained to approximate the true reverse process 𝑞(x𝑡−1 |x𝑡 , x0). The network is typically
trained to predict either the original data x0, the added noise 𝝐 , or the denoised sample using a
simplified objective derived from the variational lower bound [3].

3.3 Key Variants of DMs
Although DDPMs achieve high-quality generation, they typically require hundreds or thousands of
steps during inference, resulting in slow sampling. Afterwards, several improvements and variants
of the original DDPM have been proposed to address issues related to sampling speed, flexibility,
and continuous-time modeling. The most notable variants include Denoising Diffusion Implicit
Models (DDIM) and Continuous-Time DMs (CTDMs).

3.3.1 Denoising Diffusion Implicit Models. To address the inefficiency of DDPMs, DDIMs [67]
introduce a non-Markovian deterministic sampling process that maintains sample quality while
reducing the number of inference steps. The key idea is to define an implicit generative process
using deterministic transformations:

x𝑡−1 =
√
𝛼𝑡−1

(
x𝑡 −
√

1 − 𝛼𝑡𝝐𝜃 (x𝑡 , 𝑡)√
𝛼𝑡

)
+
√

1 − 𝛼𝑡−1𝝐𝜃 (x𝑡 , 𝑡), (6)

where 𝛼𝑡 =
∏𝑡

𝑠=1(1 − 𝛽𝑠 ). DDIM enables fast inference and preserves the flexibility to interpolate
between stochastic and deterministic sampling.

3.3.2 Continuous-Time Diffusion Models. CTDMs extend discrete diffusion steps to a continuous
framework, treating the forward and reverse processes as solutions to Stochastic Differential
Equations (SDEs) or Ordinary Differential Equations (ODEs) [68]. The forward SDE is defined as:

𝑑x(𝑡) = 𝑓 (x(𝑡), 𝑡)𝑑𝑡 + 𝑔(𝑡)𝑑w(𝑡), (7)

where w(𝑡) is the standard Wiener process. The reverse-time process 𝑔(𝑡) also follows an SDE that
can be solved using learned score functions, i.e., 𝑔(𝑡) = ∇x log 𝑝𝑡 (x). This formulation allows the
use of score matching for training and provides a unified view of DMs as continuous generative
flows. Key advantages of CTDMs include: adaptive step sizes for more efficient sampling, flexible
conditioning mechanisms for controllable generation, and compatibility with advanced solvers
(like DPM-Solver [69], which accelerates sampling with high precision.)

3.3.3 Guided Sampling Diffusion Models. GSDMs focus on the conditioned data distribution 𝑝 (x|y)
to generate samples with attributes of the label y. According to whether an extra classifier model is
adopted, the GSDM methods are divided into two categories: classifier GSDMs and classifier-free
GSDMs.
Classifier GSDMs. A key advantage of classifier GSDMs is that the classifier and the DM are

trained independently. In other words, we just need to train a classifier to represent 𝑝 (y|x) and
then integrate it into an existing DM in sampling. In particular, we can train an extra classifier
𝑝 (y|x𝑡 ) based on noisy samples x𝑡 . Then, according to the pre-trained classifier and [70], the DM’s
reverse process is expressed as

𝑝𝜃 (x𝑡−1 |x𝑡 , y) =N(x𝑡−1; 𝜇𝜃 (x𝑡 , 𝑡) + 𝜆 · Σ𝜃 (x𝑡 , 𝑡)𝑔(𝑡),
Σ𝜃 (x𝑡 , 𝑡)), (8)

where 𝑔(𝑡) = ∇x log 𝑝𝜙 (y|x𝑡 ) and 𝜆 represents a factor of the guidance scale.
Classifier-free GSDMs. Unlike the classifier GSDMs, classifier-free GSDMs should retrain the

network model totally since their original training setups are modified. Thus, the classifier-free
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GSDMs are more expressive in training while achieving better performance. The classifier-free
GSDMs aim to predict the score function ∇x log 𝑝𝑡 (x|y). Through the Bayes Theorem, the score
function can be represented an unconditional term and a classifier condition term, i.e.,

∇x log 𝑝 (x|y) = ∇x log 𝑝 (y|x) + ∇x log 𝑝 (x). (9)

Furthermore, Song et al. [67] demonstrate that the DM and the score function are equivalent,
meaning ∇x𝑡 log 𝑝 (x𝑡 ) ∝ 𝝐𝜃 (x𝑡 , 𝑡). As a result, by substituting ∇x log 𝑝 (y|x) with 𝝐𝜃 (x𝑡 , 𝑦) into the
equation (9) and inferring, we have

𝝐𝑤 (x𝑡 , y) = 𝝐𝜃 (x𝑡 , y) +𝑤 · (𝝐𝜃 (x𝑡 , y) − 𝝐𝜃 (x𝑡 )), (10)

where𝑤 represents the guidance scale. Finally, the equation (10) is used for classifier guidance in
classifier-free GSMDs.

3.3.4 Latent Diffusion Models. A limitation of standard DMs is their high computational cost
when applied directly in the input space (e.g., pixels or state-action vectors). LDMs address this
by performing diffusion in a compressed latent space, obtained through an autoencoder. Given an
encoder 𝐸 and decoder 𝐷 , data x0 is mapped into a latent representation:

z0 = 𝐸 (x0). (11)

The diffusion process is then applied in the latent space:

𝑞(z𝑡 | z𝑡−1) =N
(
z𝑡 ;

√︁
1 − 𝛽𝑡 z𝑡−1, 𝛽𝑡 I

)
. (12)

The reverse process is parameterized as:

𝑝𝜃 (z𝑡−1 | z𝑡 ) =N(z𝑡−1; 𝜇𝜃 (z𝑡 , 𝑡, 𝑐), Σ𝜃 (z𝑡 , 𝑡, 𝑐)) , (13)

where 𝑐 denotes optional conditioning information, such as goals, rewards, or environment states
in decision-making tasks. After denoising, the decoder reconstructs the data:

x̂0 = 𝐷 (z0). (14)

LDMs offer two major benefits: 1) Efficiency: Diffusion in a low-dimensional latent space signifi-
cantly reduces computational cost. 2) Flexibility: Conditioning mechanisms (e.g., cross-attention
with goals or state inputs) enable controllable generation of trajectories, actions, or subgoals in
sequential decision-making.

3.4 DMs’ Advantages for RL
DMs have recently emerged as a powerful generative paradigm for modeling complex, multi-modal
distributions [28]. We observed that DMs provide a principled and expressive framework for
generative modeling, characterized by a gradual noising process and its learned reversal. Therefore,
DMs have emerged as a promising new direction to overcome the challenges in RL. By modeling
trajectory distributions through a denoising generative process, they provide:
• Expressive policy representations that capture multimodal and long-horizon behaviors.
• Improved generalization through generative pretraining and data augmentation.
• Stable training dynamics compared to adversarial and bootstrap-based methods.

These advantages position DMs as a powerful framework to advance the state-of-the-art in sequen-
tial decision-making under complex, dynamic, and uncertain environments.

, Vol. 1, No. 1, Article . Publication date: October 2025.



14 C. Xu et al.

DMs
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Multi-

agent RL

Collaborative Pol-
icy Learning: Each
agent’s trajectory is
modeled as a condi-
tional distribution,
allowing for collab-
orative policy learn-
ing among multiple
agents.

Application Scenarios: Edge Computing [71], Robot
control & Game play & Navigation [72–76]

Representative works: Multi-agent Collaborative
Diffusion [71], Multi-agent Hierarchical Diffusion [72]

Multi-Agent Trajectory Diffusion: Extend diffusion-
based action modeling to multi-agent collaboration.

Joint Trajectory
Generation: Enable
trajectory-level co-
ordination and plan-
ning across multiple
agents.

Application Scenarios: Autonomous driving [77],
Robot control & Game play [78, 79]

Representative works: Multi-agent Motion Diffuser
[77], Multi-agent Learning Diffuser [78]

Multi-Agent Policy Diffusion: Extend diffusion-
based policy generation to multi-agent coordination
and adversarial games.

DMs for
Single-

agent RL

Policy Learning: In-
stead of generating
entire trajectories,
these approaches ap-
ply DMs at the action
level, treating each
action as the target of
denoising. Application Scenarios: Recommender system [80,

81], Edge computing [14, 15], NLP [8, 82], Game play
& Navigation [32, 35, 38, 83–85].

Representative works: Recommender Diffuser [80],
Value/Q-guided Diffuser [14, 32]

Function Guidance: Incorporate reward signals or
learned functions into the reverse process to bias the
denoising toward high-return actions.

Policy Diffusion: Model the conditional distribution
of the next action given the state.

Trajectory Opti-
mization: Treat RL
as a conditional se-
quence generation
problem, modeling
entire state-action
trajectories as data
samples from an un-
derlying distribution.

Application Scenarios: Human motion generation
[86], Autonomous driving [87–89], Robot control [11–
13, 90]

Representative works: Motion Diffuser [86], Trajec-
tory Diffuser [12], Planning Diffuser [13]

Conditioned Control: Extend trajectory diffusion
by conditioning on task objectives, rewards, enabling
controllable trajectory generation.

Trajectory Diffusion: Learn the distribution of expert
or high-reward trajectories and generate new trajecto-
ries through conditional denoising.

Fig. 7. Taxonomy of DMs for RL. Only the representative papers for each type of task are listed.

4 DMs for Single-agent RL and Multi-agent RL: Function Taxonomy
This section examines the current development of the DMS for RL from the perspective of func-
tion taxonomy. First, we have two categories: DMs for single-agent and DMs for multi-agent RL
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Table 2. Summary of representative papers on DMs for single-agent RL.

Paper Key Contribution The Role of DMs

ICML’22[13] Introduce a denoising DM designed for trajectory
data and behavior synthesis. Employ a DM to refine trajectories iteratively.

ICLR’22[11] Investigate the conditional generative model to solve
sequential decision-making directly.

Use a DM as the conditional generative model
policy.

arXiv’25[87] Present an end-to-end paradigm for autonomous driv-
ing based on DMs.

Leverage a DM to learn the latent distribution
of bird’s-eye view images.

NIPS’23[88]
Propose a novel structured reconstruction algorithm
for transforming visual sensor data into polygonal
shapes with DMs

Apply the forward diffusion process to train
guidance networks, and use the reverse pro-
cess to reconstruct polygonal shapes.

CVPR’25[89]
Introduce DMs into end-to-end autonomous driving
to address the issues of mode collapse and heavy
computational overhead.

Employ DMs to interact with conditional infor-
mation in a cascaded manner, enabling more
accurate trajectory reconstruction.

TPAMI’24[86] Propose a framework for applying DMs to text-driven
human motion generation.

Utilize a DM to generate human motions
through a series of denoising steps.

TII’24[83],
TMC’24[14],
TMC’25[15]

Design a novel DRL method for improving behavior
policy using DMs.

Train a reverse diffusion guide policy to gen-
erate the optimal action.

arXiv’23[84] Present a diffusion-based constrained policy search
approach for offline RL.

Apply DMs to solve the limited expressivity
problem of unimodal Gaussian policies.

arXiv’23[85] Propose an effective conditional DM, referred to as
the temporally-composable diffuser.

Integrate the DRL with a DM to extract tem-
poral information from interaction sequences.

NIPS’23[35] Propose a diffusion-based method for multi-task RL. Incorporate a DM into transformer backbones
for generative planning in multi-task RL

NIPS’22[8]
Develop a novel non-autoregressive language model
for complex and controllable generation tasks with
continuous DMs.

Leverage DMs to denoise a sequence of Gauss-
ian vectors into word vectors, producing a se-
ries of intermediate latent variables.

ICLR’23[82] Propose a DM designed for sequence-to-sequence
text generation tasks.

Use the DM as a conditional language model
to generate text.

NIPS’23[81]
Reshape sequential recommendation as a learning-to-
generate paradigm via a guided DM, achieving the
user’s true preference.

Generate an oracle item to reconstruct the pos-
itive item through the DMs’ denoising process.

SIGIR’23[80]

Present a novel diffusion recommendermodel to learn
the generative process in a denoising manner, point-
ing out a promising future direction for generative
recommender models.

Utilize DMs to perform high-dimensional
categorical prediction and capture the time-
sensitive dynamics of interaction sequences.

according to the number of agents in RL. We then present the taxonomy for these two categories,
respectively, from the function of DMs in RL. Finally, we investigate the specific research status for
each subcategory. The summary of representative papers on DMs for RL is given in the Fig. 7.

4.1 DMs for Single-agent RL
In single-agent RL, DMs have emerged as a novel paradigm to improve policy expressiveness,
trajectory optimization, and goal-conditioned behavior. Traditional RL methods typically assume
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Fig. 8. Framework of trajectory planning with diffusion-based single-agent RL. DMs are employed to generate
trajectories, where the sampling objective focuses on portions of trajectories that may vary depending on the
specific task requirements.

unimodal policy distributions (e.g., Gaussians), which are limited in capturing complex, multimodal,
or stochastic behaviors often needed in real-world environments. DMs address these limitations by
learning generative models over trajectories or action distributions using a denoising process, as
shown in Table 2.

4.1.1 Diffusion-based Trajectory Optimization. DMs can be used as planners to generate entire
trajectories by modeling the joint distribution over sequences of states and actions [86, 87, 90]. One
representative method is Diffuser, a pioneering framework that applies DDPMs to offline RL [13].
The model is trained on expert demonstrations, learning to reconstruct clean trajectory sequences
from corrupted versions via a denoising process. During inference, trajectory optimization is
conducted by conditioning the generation on desired outcomes, such as specific terminal states or
cumulative rewards, thereby steering the planner toward task-specific goals. The general framework
of diffusion-based RL solution for trajectory planning is illustrated in Fig. 8, highlighting the model’s
ability to learn, generate, and adapt trajectories in a structured and goal-consistent manner. Let
a trajectory be defined as 𝜏 = {(𝑠1, 𝑎1), (𝑠2, 𝑎2), ..., (𝑠𝑇 , 𝑎𝑇 )}. The forward process gradually adds
noise to the trajectory:

𝑞(𝜏𝑡 |𝜏𝑡−1) =N(
√︁

1 − 𝛽𝑡𝜏𝑡−1, 𝛽𝑡 𝐼 ), (15)
where 𝛽𝑡 is a variance schedule controlling the noise. The reverse process models the denoising
dynamics:

𝑝𝜃 (𝜏𝑡−1 |𝜏𝑡 ) =N(𝜇𝜃 (𝜏𝑡 , 𝑡), Σ𝜃 (𝜏𝑡 , 𝑡)). (16)
During inference, the model samples trajectories conditioned on future constraints (e.g., desired

goal states 𝑠∗
𝑇
), thus acting as a goal-conditioned planner. This approach bypasses the need for

explicit dynamics modeling and provides implicit planning via denoising.
The implicit planning strategy of DMs offers a compelling alternative to conventional model-

based planning methods, which often require explicit environment dynamics modeling and suffer
from compounding errors in long-horizon predictions [91]. By contrast, the diffusion-based method
inherently captures complex temporal dependencies in trajectories and remains robust to multi-
modal behavior patterns [77, 88]. Furthermore, the flexibility to guide trajectory generation using
conditional signals (e.g., goals, cost functions, constraints) empowers the framework to support
diverse goal-directed behaviors that are typically challenging for traditional policy gradient or
value-based approaches to learn directly. In addition to sample efficiency, this method exhibits
strong generalization to out-of-distribution goals and tasks without the need for online environment
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Fig. 9. Framework of policy learning with diffusion-based single-agent RL. DMs are used to model policies
by sampling actions conditioned on given states. The sampling process is typically guided either by target
and critic networks using policy gradient-like methods or by directly incorporating guidance terms into the
training objective.

interactions or fine-tuning. As such, it provides a unified, data-driven framework for planning in
high-dimensional continuous control tasks.

4.1.2 Diffusion-based Policy Learning. Rather than optimizing over full trajectories, some recent
works propose using DMs to represent stochastic policies directly, allowing actions to be sampled
one step at a time based on the current observation [15, 32, 92, 93]. The framework of diffusion-
based policy learning in single-agent RL is illustrated in Fig. 9. This approach defines a denoising
process in the action space, conditioned on the current state:

𝑎
(0)
𝑡 = ReverseDiffusion𝜃 (𝑎 (𝑇 )𝑡 |𝑠𝑡 ), (17)

where 𝑎 (𝑇 )𝑡 ∼ N(0, 𝐼 ). In this setup, a DM is trained to generate an action 𝑎𝑡 conditioned on the
current state 𝑠𝑡 , by learning to reverse a noise-injection process, i.e., 𝑎𝑡 ∼ 𝑝 (𝑎𝑡 |𝑠𝑡 ). This process
effectively enables the model to sample from complex, high-dimensional, and multimodal action
distributions that are difficult to capture with traditional unimodal Gaussian policies commonly
used in RL.
By enabling a more expressive policy representation, diffusion-based policies support more

diverse and adaptive behaviors across a wide range of tasks. For instance, Ajay et al. [11] introduced
the Decision Diffuser framework, which reinterprets decision-making as a conditional sequence
modeling problem. The model generates sequences of actions and states conditioned on partial
trajectories and desired outcomes. This formulation allows the agent to exhibit rich behavioral
diversity and adapt to various task specifications or reward functions, without additional fine-tuning
or retraining, making it highly suitable for offline RL and multi-objective optimization. Moreover,
diffusion policies offer inherent flexibility in incorporating external constraints during sampling.
Techniques such as classifier guidance [94] or classifier-free guidance enable conditioning the
sampling trajectory on soft or hard constraints, including safety thresholds, energy budgets, or
task-specific requirements. These mechanisms extend the usability of DMs in practical settings
where dynamic constraints must be satisfied in real time. Overall, integrating DMs into policy
learning introduces a powerful and general framework that not only improves expressiveness
and robustness over conventional methods but also supports flexible control over the behavior
generation process, aligning well with real-world decision-making scenarios.
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4.1.3 Diffusion-based IL. IL [95] bypasses the need for rewards by leveraging expert demonstra-
tions. The simplest form, Behavior Cloning (BC), treats the problem as supervised learning over
state-action pairs:

𝜋BC = arg min
𝜋

1
|D|

∑︁
(𝑠,𝑎) ∈D

ℓ (𝜋 (𝑠), 𝑎), (18)

where D is a dataset of expert trajectories and ℓ (·) is the loss. While I) is generally more sample-
efficient than RL, it is susceptible to distributional shift, where small deviations from expert
trajectories compound over time as the agent visits previously unseen states [96]. For example, a
robot learning to stack blocks from human demonstrations may execute slightly misaligned grasps
early in a trajectory; without corrective feedback, these errors accumulate, causing failure in the
later stages of the task.
To mitigate these issues, advanced approaches such as DAGGER [97] incorporate corrective

feedback by querying the expert on states visited by the learner. In the stacking robot example,
DAGGER would provide corrective actions for misaligned grasps, reducing compounding errors.
Inverse RL[98, 99] offers another paradigm by inferring the underlying reward function from
demonstrations, allowing the agent to generalize beyond the observed states. Similarly, generative
adversarial IL [95] frames IL as a distribution-matching problem, encouraging the agent to generate
behavior indistinguishable from the expert across the state-action space. These methods help IL
handle longer horizons and complex behaviors, but still face challenges in modeling full trajectory
distributions and handling multimodal behaviors.

DMs have recently been employed to overcome these limitations by modeling the full trajectory
distribution, capturing multimodal and long-horizon behaviors more effectively. For example,
Latent Diffusion Planning (LDP) [100] improves imitation accuracy and efficiency, even when
demonstrations are imperfect or suboptimal. In a robotic kitchen task, LDP can generate trajectories
that correct slight errors in human demonstrations, such as adjusting grasp angles or timingmotions,
producing smoother and more reliable behavior.

SkillDiffuser [35] extends this idea by segmenting trajectories into reusable skills and modeling
each skill with a diffusion process. For instance, in a pick-and-place task, a single “grasp object”
skill learned via SkillDiffuser can be reused across multiple object types or locations, improving
sample efficiency and generalization.
Diff-Control [101] approaches IL from a state-space modeling perspective, using diffusion-

based models to learn action representations that respect system dynamics. In applications like
autonomous driving, this allows the model to capture the underlying structure of steering and
acceleration behaviors over time, generating smooth and realistic vehicle trajectories that generalize
better to novel road layouts or traffic conditions.

Collectively, these diffusion-based IL approaches provide more expressive policy representations,
allowing agents to handle long-horizon tasks, complex or multimodal behaviors, and imperfect
demonstration data. For example, in robotic manipulation, a diffusion-based IL model can imitate
human stacking strategies while adjusting trajectories to prevent collisions, and in simulated
driving, it can reproduce expert lane-change behaviors while adapting to new traffic patterns. By
modeling full trajectory distributions rather than pointwise actions, DMs reduce compounding
errors and improve robustness in imitation tasks, bridging a key gap in conventional IL approaches.

4.1.4 Diffusion-based Exploration Augmentation. Exploration remains a central challenge in RL,
particularly in environments with sparse rewards, deceptive feedback, or high-dimensional action
spaces. Standard exploration strategies, such as 𝜖-greedy exploration, entropy regularization [27,
102], and intrinsic motivation [103, 104], often fail to generate sufficiently diverse or informative
trajectories in such settings. Recently, DMs have been investigated as exploration augmenters,
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where they serve as powerful synthesizers of trajectories or state-action sequences, enabling agents
to explore beyond the support of the collected data. A diffusion-based exploration augmenter can
be formalized as learning a generative model over trajectories 𝜏 = (𝑠0, 𝑎0, . . . , 𝑠𝑇 , 𝑎𝑇 ):

𝑞(𝜏) =
∏𝑇

𝑡=0
𝑞(𝑠𝑡 , 𝑎𝑡 ), (19)

where the forward diffusion process gradually corrupts trajectories into Gaussian noise,

𝑞(𝜏𝑡 |𝜏𝑡−1) =N
(√︁

1 − 𝛽𝑡 𝜏𝑡−1, 𝛽𝑡 𝐼
)
, (20)

and the reverse process, parameterized by 𝜃 , reconstructs trajectories by iteratively denoising,

𝑝𝜃 (𝜏𝑡−1 |𝜏𝑡 , 𝑐) =N
(
𝜇𝜃 (𝜏𝑡 , 𝑐, 𝑡), Σ𝜃 (𝜏𝑡 , 𝑐, 𝑡)

)
, (21)

where 𝑐 denotes optional conditioning variables, such as novelty, reward, or uncertainty. During
training, the DM is optimized with the standard noise-prediction objective [3]:

LDM = E𝜏,𝜖,𝑡
[

𝜖 − 𝜖𝜃 (√𝛼𝑡𝜏 + √1 − 𝛼𝑡𝜖, 𝑡, 𝑐)



2
]
. (22)

For exploration augmentation, synthetic trajectories 𝜏 ∼ 𝑝_𝜃 (𝜏 |𝑐) are sampled and incorporated
into policy updates, either by adding them to the replay bufferD (i.e.,D ← D∪{𝜏}) or by directly
regularizing the policy objective to encourage consistency with diffusion-generated trajectories.
Unlike local action perturbations, diffusion synthesizers generate entire plausible trajectories,

enabling more global and structured exploration. In sparse-reward manipulation tasks, such as
stacking blocks, a diffusion synthesizer can generate multiple feasible multi-step grasp-and-place
trajectories. These samples expose the agent to diverse strategies, mitigating compounding errors. In
goal-directed maze environments, diffusion-based exploration can produce diverse path candidates
(shortcuts, detours, obstacle avoidance), improving the likelihood of reaching distant goals. In
collaborative edge computing, diffusion synthesizers can propose diverse scheduling strategies for
task allocation [92], improving robustness to uncertain workloads. In recommendation systems,
synthetic user interaction sequences generated via diffusion can simulate novel preferences beyond
logged data, reducing cold-start problems.

Exploration can be further enhanced by classifier guidance or reward-guided sampling [13, 70],
where the reverse denoising process is biased toward regions of interest. For example, in au-
tonomous driving, generated trajectories can be guided to prioritize safety constraints. Similarly,
consistency models [105] can accelerate sampling, making exploration augmentation feasible in
high-frequency online RL settings. Therefore, DMs represent a promising new paradigm for explo-
ration augmentation, enabling agents to leverage trajectory-level synthesis for diverse, structured,
and goal-directed exploration. Their integration into online and offline RL opens new directions
for addressing one of the most fundamental bottlenecks in decision-making systems.

4.1.5 Diffusion-Based Environmental Simulation. Environmental simulation is a cornerstone of
model-based reinforcement learning, where an agent leverages a learned dynamics model to
generate synthetic rollouts for policy improvement [53]. Traditional simulators typically learn a
parametric model 𝑝 (𝑠𝑡+1, 𝑟𝑡 |𝑠𝑡 , 𝑎𝑡 ), often represented by neural networks [106], to predict the next
state and reward. However, these models are prone to model bias and compounding errors when
unrolled over long horizons.
DMs offer a more expressive alternative by modeling entire trajectories or future sequences

directly. Instead of learning one-step dynamics, DMs approximate the distribution:

𝑝𝜃 (𝜏) = 𝑝𝜃 (𝑠0, 𝑎0, . . . , 𝑠𝑇 , 𝑎𝑇 ), (23)
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where 𝜏 denotes a trajectory of states and actions. A forward noising process is applied to trajectories
by Eq. (20). The denoising model learns the reverse process:

𝑝𝜃 (𝜏𝑡−1 |𝜏𝑡 ) ≈ 𝑞(𝜏𝑡−1 |𝜏𝑡 , 𝜏0), (24)

allowing the reconstruction of trajectories 𝜏0 from Gaussian noise. By conditioning the diffusion
model on the current state and action, environmental simulation becomes:

𝑝𝜃 (𝑠𝑡+1:𝑇 , 𝑎𝑡 :𝑇 |𝑠0:𝑡 , 𝑎0:𝑡 ) ≈ 𝑝 (𝑠𝑡+1:𝑇 , 𝑎𝑡 :𝑇 |𝑠0:𝑡 , 𝑎0:𝑡 ), (25)

where the generative process produces multi-step rollouts that preserve temporal coherence.
Several works have demonstrated the benefits of diffusion-based simulators in decision-making.

Trajectory Diffuser [13] learns trajectory distributions from offline datasets, enabling the synthesis
of plausible rollouts conditioned on goals or rewards. Motion Diffuser [86] applies diffusion to
simulate realistic motion trajectories, supporting safe planning in robotics. REDI [107] adapts
diffusion-based simulation to online RL, enabling agents to refine policies under non-stationary
dynamics.DriveDreamer [108] integrates large-scale diffusionworldmodels for autonomous driving,
generating consistent and interpretable environment trajectories.
Compared to conventional one-step models, diffusion-based simulators capture multimodality,

uncertainty, and long-horizon dependencies, reducing error accumulation. For instance, in robotics,
they can simulate diverse yet physically plausible trajectories, while in autonomous driving, they
generate realistic traffic interactions. However, challenges remain: diffusion simulation is computa-
tionally expensive, and integrating safety constraints is non-trivial. Promising directions include
accelerating inference with DDIM [67] and DPM-Solver [69], or combining diffusion with latent
variable models for lightweight rollout generation.

4.1.6 Diffusion-Based Reward Modeling. Reward modeling is essential in reinforcement learning
(RL) for guiding policy optimization. Conventional approaches assume a scalar reward function
𝑟 (𝑠, 𝑎) or learn it via supervised regression from demonstrations [98, 99]. However, in real-world
tasks, rewards may be implicit, noisy, or multimodal, making them difficult to specify explicitly.
DMs provide a flexible generative framework to capture such complexity in reward signals.

LetD = {(𝑠𝑡 , 𝑎𝑡 , 𝑟𝑡 )}𝑁𝑡=1 denote a dataset of transitions. Instead of directly learning a deterministic
mapping 𝑟𝜙 : (𝑠, 𝑎) ↦→ 𝑟 , diffusion-based reward models learn a generative distribution over rewards
conditioned on trajectories:

𝑝𝜃 (𝑟0:𝑇 |𝜏) = 𝑝𝜃 (𝑟0, . . . , 𝑟𝑇 |𝑠0, 𝑎0, . . . , 𝑠𝑇 , 𝑎𝑇 ). (26)

The forward process perturbs the reward sequence:

𝑞(𝑟𝑡 |𝑟𝑡−1) =N
(√︁

1 − 𝛽𝑡𝑟𝑡−1, 𝛽𝑡 𝐼
)
, (27)

while the denoising model reconstructs clean rewards by learning:

𝑝𝜃 (𝑟𝑡−1 |𝑟𝑡 , 𝜏) ≈ 𝑞(𝑟𝑡−1 |𝑟𝑡 , 𝑟0). (28)

At inference, reward signals are generated as:

𝑟0:𝑇 ∼ 𝑝𝜃 (𝑟0:𝑇 |𝜏, 𝑐), (29)

where 𝑐 can encode task-specific conditions such as subgoals, safety constraints, or user preferences.
Diffusion-based reward modeling has been applied in several recent works. Decision Diffuser

[11] treats decision-making as conditional sequence modeling, where rewards guide trajectory
denoising.MetaDiffuser [109] incorporates classifier-guided sampling to generate reward-consistent
trajectories for meta-RL tasks. AdaptDiffuser [90] adapts diffusion reward models to changing
environments, enabling robust performance under non-stationarity. Safe Reward Diffusion [110]
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Table 3. Summary of representative papers on DMs for multi-agent RL.

Paper Key Contribution The Role of DMs

NIPS’24[78]
Propose a diffusion-based multi-agent learning frame-
work to unify decentralized policy, centralized con-
troller, teammate modeling, and trajectory prediction.

Realize with an attention-based DM to model
the complex coordination among the behav-
iors of multiple agents.

ICLR’25[79]
Propose a DM-based offline multi-agent RL frame-
work, significantly boosting the offline multi-agent
RL algorithm compared to the original dataset.

Integrate the Q function directly into the DM
as guidance to maximize the global returns,
eliminating the need for separate training.

CVPR’23[77]

Introduce a general and flexible framework for con-
trolled and guided trajectory sampling, driven by ar-
bitrary differentiable cost functions, enabling a wide
range of novel applications.

Use conditional DMs to represent a
permutation-invariant, multi-agent joint
motion distribution.

arXiv’23[74]
Present a novel diffusion offline multi-agent model
that achieves significant improvements in perfor-
mance, generalization, and data-efficiency.

Incorporate a DM into the policy network to
enhance policy expressiveness and diversity.

APWCS’24[75]
Integrate DMs into the DRL technique to accelerate
decision-making, considering communication among
system agents.

Employ DMs to enhance multi-agent coor-
dination, even when agents make decisions
independently.

arXiv’24[76] Propose global state inference for collaborative multi-
agent RL with DMs.

Leverage DMs to reconstruct the global state
using local observations.

ICML’23[72]
Incorporate goals into the control-as-inference frame-
work by formulating offline decision-making as a con-
ditional generative modeling problem.

Use a reward-conditioned goal DM to dis-
cover subgoals, and a goal-conditioned trajec-
tory DM to generate corresponding actions.

arXiv’24[73]
Address motion planning for an evasive target in par-
tially observable multi-agent adversarial pursuit and
evasion games with DMs.

Integrate a DM to generate global paths that
adapt to environmental observations.

TSC’25[71]

Propose a novel vector database-assisted cloud-edge
collaborative optimization framework of the quality
of service of Large LanguageModels (LLMs), reducing
response times for subsequent similar requests.

Employ a diffusion-based policy network to
extract the request features of LLMs, deter-
mining whether to request the LLMs in the
cloud or retrieve results from the edge.

integrates constrained MDPs into the diffusion reward modeling framework, producing safety-
aware reward shaping.
Compared to classical regression-based reward models, diffusion-based reward modeling can

capture multimodal reward distributions, model long-horizon reward structures jointly with state-
action sequences, and support conditioning on constraints, goals, or user preferences. However,
training reward diffusion models can be computationally expensive, and their stochastic nature
may introduce variance in policy optimization. Future directions include variance reduction strate-
gies [105], integrating reward diffusion into online RL [107], and combining with inverse RL
frameworks [95] for preference learning at scale.

4.1.7 Advantages Over Traditional Policies. This paradigm of the DM for single-agent RL has
demonstrated competitive or superior performance on robotic locomotion, manipulation, and
navigation tasks compared to traditional DRL baselines. The specific advantages include:

• Multimodal action modeling: DMs allow sampling diverse action modes, enhancing
exploration and behavior diversity.
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• Implicit planning: Diffusion steps act as an optimizer, guiding the model towards optimal
behaviors conditioned on goals or rewards.
• Compatibility with offline RL: Since DMs learn from static datasets, they are well-suited
for offline scenarios where online exploration is risky or expensive.
• Constraint handling: Classifier-guided sampling [94] enables enforcing safety or energy
constraints at inference time without modifying the base model.

4.2 DMs for Multi-agent RL
DMs can also be extended for multi-agent and hierarchical learning. In multi-agent systems, RL
becomes more complex due to non-stationary environments, coordination requirements, and
communication constraints in POMDPs. DMs offer a new perspective by enabling the modeling
of joint or decentralized policies with rich, expressive behavior distributions, which can improve
cooperation, communication, and robustness, as shown in Table 3.

4.2.1 Diffusion-based Joint Trajectory Generation. For multi-agent systems and hierarchical tasks,
they usually present additional challenges due to the need for coordinated planning and abstraction
compared to single-agent and non-hierarchical learning [111, 112]. DMs are well-suited for these
settings due to their compositional nature. In centralized settings, the goal is to model the joint
trajectory distribution across all agents [77]. Let 𝜏 = {(𝑠1, a1), ..., (𝑠𝑇 , a𝑇 )}, where a𝑡 = (𝑎1

𝑡 , ..., 𝑎
𝑁
𝑡 )

is the set of actions for 𝑁 agents. A DM is trained over the joint sequence to learn coordinated
behavior:

𝑝𝜃 (𝜏 (0) |𝑠1, g) =
∏𝑇

𝑡=1
𝑝𝜃 (a𝑡 |𝜏<𝑡 , 𝑠1, g), (30)

where g may represent shared team goals. This approach enables trajectory-level coordination
and planning, as seen in Multi-agent Learning Diffuser [78]. The framework of joint trajectory
generation across agents with attention-based DMs is shown in Fig. 10.
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Fig. 10. Framework of joint trajectory generation across agents with attention-based DMs. Every decoder
layer of each agent performs attention across all agents. The multi-head attention mechanism is introduced
to fuse the encoded feature 𝑐′𝑖

𝑙
with other agents’ information for effective multi-agent collaboration.

4.2.2 Diffusion-based Collaborative Policy Learning. In multi-agent scenarios, each agent’s tra-
jectory can be modeled as a conditional distribution over a shared latent space, allowing for
collaborative policy learning [71, 75]. For instance, Li et al. [72] explore using diffusion to model
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sub-policy sequences, enabling flexible composition of high-level skills. These hierarchical DMs
facilitate zero-shot generalization across tasks by generating coherent behavior segments that fulfill
sub-goals. In decentralized settings, each agent independently learns a diffusion-based policy:

𝑎𝑖𝑡 ∼ 𝑝𝑖
𝜃
(𝑎𝑖𝑡 |𝑜𝑖𝑡 ) = ReverseDiffusion𝑖

𝜃
(𝑎𝑖 (𝑇 )𝑡 |𝑜𝑖𝑡 ), (31)

where 𝑜𝑖𝑡 is agent 𝑖’s local observation. This allows agents to reason over multimodal action spaces,
improving adaptability in competitive and partially observable environments. The framework of
decentralized policy learning with diffusion-based multi-agent RL is shown in Fig. 11.
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Fig. 11. Framework of decentralized policy learning with diffusion-basedmulti-agent RL. Each agent generates
the actions with a DM according to its observed system state.

4.2.3 Theoretical and Practical Benefits. These methods of the DMs for multi-agent RL have shown
promise in domains such as StarCraft Multi-Agent Challenge (SMAC), multi-robot warehouse
control, and autonomous driving platoons. Many practical benefits include:
• Non-stationarity mitigation: The conditional sampling process stabilizes policy updates
across agents.
• Better coordination: Joint distribution modeling enhances synchronized behaviors in
cooperative games.
• Scalability: Factorized sampling and latent conditioning reduce the burden of modeling
large joint action spaces.
• Offline multi-agent learning: DMs can leverage offline datasets, such as team trajectories,
to bootstrap decentralized policies.

5 DMs for Online RL and Offline RL: Technique Taxonomy
This section further discusses the DMs for RL from the perspective of technique taxonomy. Com-
pared to the function taxonomy, the MDs play different roles and implementations in the technique
taxonomy. In particular, we present the DMs for online RL and offline RL. Moreover, we discuss
how to use the DMs to address the challenges of each category, along with theoretical perspectives.

5.1 Diffusion-based Online RL
Online RL refers to learning policies through continuous interaction with an environment, where
agents collect new experiences and update their behavior in real time. While online RL is highly
effective in adapting to dynamic environments, it often suffers from instability and sample ineffi-
ciency, particularly in settings with distributional shifts or sparse rewards. For example, in robotic
locomotion tasks, a legged robot may encounter unmodeled terrain or sensor noise, which can lead
to unstable updates if the policy overfits to recent experiences. Similarly, in autonomous driving,
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rare traffic scenarios such as sudden pedestrian crossings or vehicle malfunctions provide sparse
feedback, making conventional online RL methods slow to adapt.

Recent works have introduced DMs to improve exploration, policy expressiveness, and trajectory
diversity in online settings [113]. By modeling multimodal action distributions, DMs allow agents to
consider multiple plausible futures, which can enhance both safety and performance. For example,
in DiffusionQL [32], the Gaussian policy in Soft Actor-Critic (SAC) is replaced with a diffusion
policy that captures complex, multimodal action distributions. This enables an agent navigating a
maze to explore multiple paths simultaneously, improving the likelihood of discovering high-reward
trajectories even under sparse feedback.
Similarly, in distributed systems, EdgeDiffusion [92] applies latent-action diffusion to online

collaborative edge computing. Here, multiple edge servers must schedule tasks under uncertain
workloads. The diffusion policy generates diverse candidate scheduling actions, allowing the system
to balance load dynamically and improve throughput. This approach demonstrates how DMs can
enhance online decision-making in non-robotic, high-dimensional action spaces where uncertainty
is inherent.

Another key development is the use of consistencymodels to accelerate sampling. Song et al. [105]
propose a framework where the iterative denoising process is replaced with a single-step or few-step
deterministic mapping, significantly reducing inference time. This is critical for high-frequency
online decision-making, such as controlling a drone at 50–100 Hz or updating trading strategies in
algorithmic finance, where standard diffusion sampling would be too slow. By combining rapid
sampling with expressive multimodal distributions, consistency models allow diffusion-based
policies to operate in fast-paced, real-world settings without sacrificing performance.
In addition to exploration and efficiency, DMs also offer advantages in robustness and general-

ization. For example, in autonomous driving simulations, a diffusion policy can sample multiple
feasible trajectories when encountering unpredictable obstacles, reducing the chance of catastrophic
failures. In robotic manipulation, DMs can propose alternative grasps or motion sequences when
the initially planned trajectory is blocked or fails mid-execution.

In summary, the integration of DMs into online RL addresses several core challenges: enhancing
exploration in sparse-reward environments, capturing multimodal action distributions, enabling
efficient high-frequency inference, and improving robustness to uncertainty. These advances
position diffusion-based policies as a promising approach for real-world online decision-making
across robotics, distributed systems, autonomous driving, and other high-stakes applications.

5.2 Diffusion-based Offline RL
Offline RL focuses on learning policies from pre-collected datasets without any online interaction
with the environment. While this setting enables safe and efficient policy learning, it introduces
challenges such as distributional mismatch between the training dataset and the deployment
environment, and extrapolation error, where the learned policy produces actions that lie outside the
support of the offline data. For instance, a robot trained offline on a dataset of kitchen manipulation
tasks may encounter novel object configurations or tools at deployment time, causing failures if the
policy cannot generalize beyond the observed trajectories. Similarly, offline autonomous driving
datasets may lack rare but critical events (e.g., sudden pedestrian crossings), making it difficult for
the agent to handle such scenarios safely.
DMs have emerged as a powerful tool for offline RL by framing policy learning as trajectory

modeling and conditional sequence generation. The Trajectory Diffuser [13] is a foundational
method that trains a DM on offline trajectories and performs trajectory planning by conditioning
on target goals or rewards. For example, in MuJoCo locomotion tasks, the model can generate
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sequences of joint torques to achieve a specified endpoint or velocity, effectively planning multi-step
behaviors without online interaction.

Building on this, Decision Diffuser [11] treats offline decision-making as a conditional sequence
generation problem, allowing agents to generate entire trajectories conditioned on desired outcomes.
This approach has been applied to robotic manipulation, where the model can generate sequences
of pick-and-place actions conditioned on the goal of arranging objects into a specific configuration,
providing a flexible and general framework for complex offline tasks.
Motion Diffuser [86] further extends diffusion-based planning to motion generation tasks, pro-

ducing smooth and feasible motion trajectories for robots or animated characters from offline
motion datasets. For instance, it can generate walking, running, or jumping sequences that respect
physical constraints while interpolating between motion primitives observed in the training data.
Subsequent developments focus on improving generalization and control precision in offline

settings. Trajectory-level sampling with classifier guidance[90, 109] allows the model to bias
trajectory generation toward high-reward regions or satisfy safety constraints. For example, in
warehouse robotics, classifier-guided sampling can steer motion plans away from obstacles while
still achieving task goals efficiently. Diffusion-based latent skill priors[114, 115] capture reusable
behaviors as compressed latent representations, enabling the policy to compose skills flexibly. In
multi-task robot manipulation, such priors allow the agent to adapt learned skills to novel objects
or goals that were not present in the offline dataset.
Collectively, these methods demonstrate that offline diffusion-based RL can model complex,

multi-step behaviors, handle high-dimensional action spaces, and incorporate goal or reward
conditioning. They provide a foundation for safe and generalizable policy learning from static
datasets, paving the way for applications in robotics, autonomous driving, and other real-world
sequential decision-making tasks where online exploration is costly or unsafe.

5.3 Theoretical Insights
Beyond empirical performance, diffusion-based RL is being studied theoretically. Key questions
include sample complexity, convergence guarantees, and variance analysis. Works like [32] and [11]
analyze the stability and expressivity of diffusion-based policies compared to Gaussian baselines.
Consistency training [105] provides provable guarantees for fast sampling. Further, connections
between DMs and score-based RL have been explored to justify their decision-theoretic advantages
[116]. Ongoing research seeks to understand the limitations of denoising-based policies in high-
dimensional or partially observable spaces [34, 83, 117].

6 Application Scenario in the DMs for RL
The theoretical underpinnings of DMs in RL remain an active research area. One interpretation
views diffusion sampling as a form of stochastic planning, where the denoising process incremen-
tally corrects sampled sequences toward feasible and optimal solutions. The capacity of DMs to
capture multimodal distributions, integrate prior knowledge, and generate diverse, high-quality
samples makes them especially well-suited for real-world applications characterized by dynamic
and uncertain environments. This section highlights recent progress in leveraging DMs across
various application domains, mainly including robotic control [90], autonomous driving [89],
text generation [45], edge Internet of Things (IoT) [92], and recommendation systems [118]. An
illustration of these application scenarios is presented in Fig. 12.

6.1 Robot Control
Diffusion-based models have been increasingly applied to robotic control tasks, including locomo-
tion, manipulation, and dexterous object handling [119–121]. These tasks involve high-dimensional,
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Fig. 12. Illustration of application scenarios with diffusion-based RL.

continuous action spaces and require precise coordination over long time horizons, making them
ideal candidates for generative modeling approaches. For example, the Diffuser framework intro-
duced in [13] leverages a DM to generate action trajectories conditioned on both past and desired
future observations. This enables goal-conditioned planning in continuous control environments,
where traditional RL approaches often struggle with sparse rewards or suboptimal exploration.

Unlike conventional RL policies that directly map states to actions, DMs operate over the
trajectory level, enabling a richer representation of behavior and facilitating the reuse of prior
knowledge. Such models have demonstrated superior flexibility in capturing complex, multimodal
action distributions and offer enhanced generalization to unseen states or goals. Moreover, they are
particularly effective in scenarios where diverse skills must be combined to solve new tasks. For
instance, [11] demonstrates that DMs trained on diverse behavior datasets can compose primitive
behaviors in a zero-shot manner, enabling agents to adapt to novel tasks without requiring additional
fine-tuning. This compositional ability is especially valuable in real-world robotics, where data
collection is expensive and retraining policies from scratch is often impractical.

In addition, recent works have explored hybrid methods that integrate DMs with learning-based
control frameworks, such as model predictive control, to achieve both long-term planning and
real-time reactivity. These approaches demonstrate improved robustness to distributional shifts
and physical perturbations, further highlighting the potential of diffusion-based RL models as a
powerful paradigm for planning tasks in robotics.

6.2 Autonomous Driving
In autonomous driving applications, decision-making systems must reason under uncertainty,
manage complex, multimodal interactions among agents, and consistently satisfy stringent safety
requirements. These systems are required not only to predict a distribution over possible future
trajectories but also to ensure that selected actions are both feasible and aligned with safety-critical
constraints. Traditional methods such as rule-based planners or probabilistic models often fall
short in capturing the full range of possible driving behaviors, particularly in highly interactive or
uncertain environments [122, 123].

To address these challenges, diffusion-based policies have been increasingly adopted for trajec-
tory prediction and decision-making tasks in autonomous driving applications [87, 108]. Owing to
their inherent capacity to model complex, multi-modal distributions, DMs can generate a diverse
set of plausible future trajectories that reflect the uncertainty and variability in driver intentions
and surrounding traffic dynamics. This capability is especially valuable in tasks such as trajectory
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forecasting, where anticipating multiple likely outcomes enables more robust downstream plan-
ning. Beyond unconditional generation, recent research has explored the integration of control
constraints directly into the sampling process using classifier-guided diffusion. These methods
leverage auxiliary classifiers to bias the denoising steps toward safe and legal outcomes, effectively
embedding constraints such as collision avoidance, lane-keeping, and traffic rule compliance into
the trajectory generation process [124]. This integration allows DMs to maintain flexibility in
behavior generation while ensuring adherence to operational safety constraints. Moreover, the
ability of DMs to operate over sequences of future actions rather than individual decisions enables
holistic planning that accounts for long-term dependencies—an essential feature in complex traffic
scenarios involving merges, roundabouts, or pedestrian interactions. The stochastic nature of
the sampling process also facilitates risk-aware planning by providing access to an ensemble of
trajectories that can be used to evaluate uncertainty and worst-case outcomes.
As autonomous driving applications continue to evolve toward higher levels of autonomy and

urban deployment, diffusion-based RL techniques are poised to play a critical role in improving the
robustness, flexibility, and safety of real autonomous driving systems.

6.3 Text Generation
In text generation scenarios, DMs have recently been explored as powerful alternatives to tradi-
tional autoregressive language models for tasks involving sequential generation, such as dialogue
generation, machine translation, and story completion [82, 125, 126]. Unlike existing autoregressive
models, which generate text token-by-token in a left-to-right fashion and are prone to exposure
bias and compounding errors, diffusion-based NLP models enable a non-autoregressive framework
where entire sequences are refined iteratively through denoising steps. This process allows for
greater global control over the generated content and reduces error propagation.

DMs excel in capturing global dependencies and long-range semantic coherence across a sequence,
which is particularly advantageous in applications like multi-turn dialogue and story generation
[45]. In these contexts, it is crucial for the model to maintain contextual consistency, handle
ambiguous user inputs, and align generated responses with the overarching conversation intent.
DMs can be conditioned on rich contextual embeddings or future constraints, allowing them to
generate responses that are not only fluent but also semantically aligned with specified goals or
outcomes [8]. Additionally, diffusion-based language models have shown improved controllability,
making them well-suited for constrained generation tasks where fine-grained control over syntax,
semantics, or structure is required [44]. For instance, in story generation, users may wish to enforce
narrative elements such as specific plot points, character development, or emotional tone. DMs
allow these constraints to be incorporated during the generation process, either through conditional
embeddings or classifier guidance, without requiring extensive retraining. Moreover, these models
have demonstrated robustness in handling diverse input formats and can generalize well in few-shot
or low-resource settings due to their ability to model uncertainty and sample diverse outputs. This
diversity is particularly valuable in dialogue systems, where multiple valid responses may exist,
and generating varied yet relevant replies is key to user engagement.
Overall, by combining expressive generative capacity with flexible conditioning and control

mechanisms, DMs offer a promising paradigm for future advancements in text generation, especially
in tasks that demand coherent long-form text generation, intent alignment, and adaptive decision-
making over sequences.

6.4 Edge IoT
Edge computing has emerged as a promising paradigm for enabling low-latency services for
computation-intensive IoT applications such as smart surveillance and real-time industrial control
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[127–129]. By bringing computational resources closer to data sources at the network edge, edge
computing significantly reduces response time and alleviates the burden on centralized cloud in-
frastructure. However, the dynamic and heterogeneous nature of edge environments, characterized
by varying network conditions, resource constraints, and task arrival patterns, poses substantial
challenges to efficient task scheduling, service placement, and resource management.
Conventional approaches to edge task scheduling typically involve heuristic optimization or

RL-based methods. While heuristics are computationally efficient, they rely on rigid, handcrafted
assumptions about system states and fail to generalize well in dynamic environments [130]. RL
methods, though more adaptive, often suffer from sample inefficiency, limited exploration in
high-dimensional action spaces, and training instability due to non-stationary objectives and
reward signals [28]. These limitations hinder their ability to handle the complex coordination and
decision-making required in multi-node edge computing scenarios. To overcome these bottlenecks,
diffusion-based models have recently been explored for task scheduling in edge intelligence systems,
offering a more expressive and stable decision-making framework [14, 131]. These models leverage
the generative capabilities of diffusion processes to capture the distributional patterns of optimal
scheduling trajectories, enabling diverse exploration and improved generalization.

For instance, Xu et al. [92] propose a latent action diffusion framework integrated into a deep RL
model for task scheduling in collaborative edge computing environments. This method introduces
a denoising diffusion process in the latent action space, which enhances the exploration of potential
scheduling decisions while maintaining temporal coherence across decision steps. By operating in
the latent space, themodel effectively avoids the pitfalls of modeling raw action distributions directly,
resulting in more robust and stable policy behavior. The framework demonstrates significant
improvements in minimizing service delays and task processing latency across distributed edge
nodes. Moreover, the proposed method’s ability to reduce policy instability and performance
variance makes it especially well-suited for real-world edge-edge collaboration scenarios, where
system dynamics and workloads can vary drastically over time. As edge computing infrastructures
grow more decentralized and task offloading scenarios become increasingly complex, diffusion-
based scheduling frameworks are poised to play a crucial role in achieving scalable, efficient, and
adaptive service provisioning.

6.5 Recommendation Systems
Recommendation systems can benefit significantly from the application of DMs, particularly in
scenarios that involve modeling user behavior sequences over time [80, 81, 132, 133]. Traditional
recommendation methods—such as matrix factorization, collaborative filtering, and sequence-based
deep learning models—often struggle to capture the stochasticity, multi-modality, and temporal
dependencies inherent in user interaction patterns. In contrast, DMs offer a flexible generative
framework capable of learning complex sequential distributions, making them particularly well-
suited for synthesizing diverse recommendation trajectories that balance both short-term user
preferences and long-term engagement objectives.

By treating user interaction histories as sequences of states and modeling their evolution through
a denoising process, DMs enable the generation of future recommendation paths that are not
only diverse but also coherent with past behavior. This capacity is especially useful in dynamic
environments like e-commerce, streaming platforms, and personalized education, where user
preferences shift over time and require adaptable, forward-looking strategies. Moreover, retrieval-
augmented diffusion frameworks [134] push the boundaries of personalization by integrating
external memory modules or retrieval mechanisms into the generative process. These systems
retrieve semantically relevant historical sequences—either from the same user or from similar user
profiles—and use them as additional conditioning signals during sampling. This hybrid approach
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enhances the diversity and relevance of generated recommendations by grounding them in real
user behavior patterns while still allowing the flexibility of generative modeling.

Such frameworks also enable zero-shot or few-shot recommendation capabilities, as the retrieval
component provides contextual grounding even in sparsely populated user-item interaction spaces.
Overall, the integration of DMs into recommendation systems promises not only improved predic-
tive performance but also a deeper understanding of sequential user behavior, paving the way for
more robust, personalized, and context-aware recommendation engines.

6.6 Others
Game Playing: DMs have also been applied in game environments where the agent must learn to
act based on sparse rewards and delayed feedback [135]. The generative nature of DMs allows for
modeling complex strategies and exploring diverse behaviors beyond the reach of conventional
policies. For example, in open-world simulation games, diffusion policies have shown promise
in generating long-term strategic behaviors that align with high-level goals [136]. Healthcare
Support:Healthcare decision-making often involves long-term planning under partial observability
and uncertainty. Diffusion-based sequential models can be used to simulate treatment trajectories
or recommend interventions by learning from expert demonstrations. Their ability to generate
plausible yet diverse treatment sequences aids in discovering alternative care plans, which is valuable
in personalized medicine [137, 138]. Multi-Agent Coordination: DMs have also been applied
to cooperative and competitive multi-agent settings, where generating coordinated strategies is
challenging. Recent works leverage the ability of DMs to jointly sample trajectories of multiple
agents while maintaining temporal and spatial consistency [78]. This is particularly useful in
applications such as swarm robotics and multiplayer gaming environments [139]. Finance and
Operations Research: In finance, sequential decision-making is crucial for tasks such as portfolio
optimization and algorithmic trading. DMs can be used to simulate market trajectories and optimize
trading strategies under uncertain conditions. Their ability to represent complex, multimodal
distributions makes them suitable for capturing the stochastic nature of financial time series [140].
Energy and Smart Grids: In smart grid systems, energy management decisions must consider
fluctuating demands and supply conditions over time. Diffusion-based policies can learn robust
scheduling strategies that adapt to uncertainties, reduce energy consumption, and stabilize grid
operations. These models are also applicable in load balancing and demand response scenarios
[141, 142].

7 Open Research Issues and Future Directions
Despite the promising advances of DMs for RL, several critical challenges and open research
issues remain. In this section, we outline these issues and highlight potential directions for future
exploration, summarized in Table 4.

7.1 Improving Sampling Efficiency
One of the primary limitations of DMs is their high computational cost, which stems from the
iterative denoising process required for sample generation. For example, on commercial platforms
such as Midjourney [143] and Hugging Face [144], users often experience delays of 40–80 seconds
for producing a single image, even with access to powerful GPUs. This latency arises because
traditional DDPMs typically rely on hundreds to thousands of reverse diffusion steps, each involving
a forward pass through a large neural network. In practice, the network architectures are also
massive (e.g., Stable Diffusion 3 contains on the order of 8 billion parameters), which further
exacerbates memory consumption and inference time.

, Vol. 1, No. 1, Article . Publication date: October 2025.



30 C. Xu et al.

Table 4. Summary of representative papers on open research issues and future directions.

Open Issues Main Feature Future Directions Ref.

Sampling effi-
ciency

DMs have a high computational cost to
adoption in real-time or high-throughput
RL applications.

Algorithmic innovation and systems-level
optimization to enable practical deployment
in time-sensitive applications.

[67, 69,
143, 144].

Sampling vari-
ance

The stochastic nature of diffusion sam-
pling introduces variability.

Explore variance-reduced or guided sam-
pling strategies to enhance reliability and
stability

[27, 70,
105]

Hardware adap-
tation and en-
ergy efficiency

DMs typically impose high computa-
tional and memory demands.

Develop energy-aware and hardware-
adaptive DMs across compression,
quantization, and architecture design.

[145].

Safety and ethi-
cal constraints

DMs rely heavily on post-hoc safety cor-
rections.

Integrate operational constraints and risk
measures into DMs’ generative process. [77].

Partial observ-
ability and un-
certainty

DMs often assume full observability, sam-
pling trajectories directly from state-
action distributions.

Integrate belief states into the denoising pro-
cess and employ memory-augmented archi-
tectures.

[146].

Long horizons
and sparse re-
wards

DMs often accumulate compound errors
in long sequences due to the iterative
denoising process.

Explore hierarchical modeling and trajec-
tory compression for DMs. [76] .

Theoretical
foundations
and guarantees

The theoretical understanding of
diffusion-based RL models remains
limited.

Tackle the questions of expressivity, con-
vergence, and generalization for diffusion-
based RL.

[147].

Benchmarks
and standard-
ized evaluation

Current methods rely on customized ex-
perimental setups, making it difficult to
compare results across different tasks.

Establish the standardized benchmarks to
cover a wider range of environments and
tasks.

[13, 89,
148].

Online and con-
tinual learning

Most diffusion-based RL methods are
tailored for offline settings with fixed
datasets.

Explore efficient adaptation mechanisms,
exploration-exploitation trade-offs, and ro-
bust noise scheduling strategies.

[107,
134] .

Multi-agent
and human-
in-the-loop
systems

The complexity of multi-agent and
human-interactive environments intro-
duces unique challenges for DMs.

Blend diffusion-based generation with com-
munication protocols, intention modeling,
and coordination mechanisms.

[149].

Large language
models

The integration of LLM and DM repre-
sents a promising frontier in various do-
mains.

Enable DMs to handle complex inputs and
generate multiple outputs with better per-
formance in LLM scenarios.

[8, 44,
108, 150].

Such computational demands are particularly problematic in RL, where policies must generate
actions at millisecond timescales to interact with dynamic environments. In robotics, for example,
a robot arm performing real-time grasping cannot afford delays of several seconds between action
samples. Similarly, in autonomous driving, where control loops typically run at 10–100 Hz, the
requirement of hundreds of denoising iterations per action renders vanilla DDPMs impractical.
High-frequency domains such as stock trading agents or multi-agent swarm control would also
become infeasible if each decision step incurredmulti-second delays. Although accelerationmethods
such as DDIM [67] and DPM-Solver [69] significantly reduce the number of required denoising
steps (e.g., from 1000 to as few as 10–20), challenges remain in balancing speed and sample quality.
For instance, fewer steps can lead to degraded trajectory fidelity in decision-making tasks, which
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may translate into suboptimal or unsafe actions in RL settings. As a result, future research must
prioritize the development of lightweight and efficient diffusion variants that support fast inference
while retaining robustness and accuracy. Promising directions include model distillation techniques
that compress iterative samplers into single-step or few-step generators, hybrid architectures that
combine diffusion backbones with autoregressive or flow-based components, and hardware-aware
optimizations leveraging edge accelerators or quantization.
In summary, while DMs have demonstrated remarkable generative capabilities, their compu-

tational overhead remains a significant barrier to adoption in real-time or high-throughput RL
applications. Bridging this gap requires both algorithmic innovation and systems-level optimization
to enable practical deployment in time-sensitive RL domains.

7.2 Reducing Sampling Variance
The stochastic nature of diffusion sampling introduces variability that can hinder performance in
tasks requiring deterministic or low-variance behaviors, such as robotics and safety-critical control.
For instance, in robotic manipulation tasks, small variations in the sampled trajectory can result
in unstable grasps or collisions with the environment, while in autonomous driving, stochastic
deviations in steering or braking actions may compromise safety margins. Unlike conventional RL
policies that default to the mean of a Gaussian distribution for stable action selection [27], DMs
inherently depend on random initialization (sampling from Gaussian noise) and a sequence of
stochastic denoising updates, leading to non-negligible trajectory variance across runs.

This variability poses challenges when high precision and repeatability are required. For exam-
ple, in industrial assembly robots, repeating the same motion plan should yield nearly identical
executions, whereas a diffusion-based policy may introduce subtle but critical differences due to
randomness in its sampling path. Similarly, in safety-critical domains like UAV navigation in clut-
tered environments, even minor stochastic deviations in planned trajectories can cause collisions
with obstacles.

Future work should therefore explore variance-reduced or guided sampling strategies to enhance
reliability and stability. Promising directions include consistency models [105], which eliminate
the need for iterative stochastic denoising and instead learn a deterministic mapping from noise to
sample in a single or few steps, thereby reducing randomness in the generation process. Another
direction is classifier-guided sampling [70], where external guidance functions (e.g., reward gradi-
ents, safety classifiers, or control constraints) are incorporated during sampling to bias trajectories
toward more reliable or constraint-satisfying behaviors. Beyond these, domain-specific strategies
such as incorporating trajectory smoothing, using deterministic initialization seeds, or hybridizing
diffusion outputs with conventional low-variance RL policies may further improve robustness.

7.3 Hardware-Aware and Energy-Efficient Design
As is well known, DMs typically impose high computational and memory demands, which severely
hinder their deployment on resource-constrained systems, such as mobile robots, unmanned aerial
vehicles, or edge devices. For example, even state-of-the-art latent DMs often require several
gigabytes of GPU memory and tens of billions of floating-point operations per sampling trajectory.
Such requirements exceed the capabilities of lightweight hardware platforms like NVIDIA Jetson
boards, which are commonly used in mobile robotics or edge AI accelerators in IoT devices. In these
settings, high energy consumption not only limits inference throughput but also drains battery life,
posing practical challenges for long-duration autonomy.
This issue is particularly acute in domains requiring on-device decision-making. For instance,

an autonomous drone tasked with obstacle avoidance must infer collision-free trajectories within
milliseconds on its onboard processor, where GPU resources are minimal. Similarly, service robots
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deployed in households or warehouses must run policies locally to ensure reliability and privacy,
but the large memory footprint and latency of DMs make this infeasible without optimization. In
edge computing for smart transportation, deploying DMs for vehicle trajectory prediction or traffic
flow control is constrained by limited bandwidth and the need for energy-efficient inference across
many distributed nodes.
To address these limitations, future research should further investigate model compression

strategies, such as pruning redundant diffusion layers or distilling iterative sampling into lightweight
one-step generators [145]. Quantization techniques, which reduce the precision of parameters (e.g.,
from FP32 to INT8), can substantially lower memory usage and power consumption while retaining
accuracy, making DMs more compatible with specialized hardware accelerators. Additionally,
architectural optimizations, for example, designing smaller U-Net backbones, leveraging lightweight
attention modules, or adopting mobile-friendly operators such as depthwise separable convolutions,
could reduce both energy consumption and inference latency. Promising directions also include
edge-cloud collaborative frameworks, where expensive denoising steps are offloaded to the cloud
while lightweight local inference handles fast decision-making.

In summary, enabling DMs to operate efficiently on mobile and edge platforms requires inno-
vations across compression, quantization, and architecture design. Developing energy-aware and
hardware-adaptive DMs will be critical for unlocking their potential in real-world decision-making
applications, particularly in robotics, autonomous systems, and large-scale IoT environments.

7.4 Integration with Safety and Ethical Constraints
Safe deployment of AI agents requires not only high performance but also strict compliance
with operational and safety constraints. For example, in autonomous driving, a planning agent
must ensure collision avoidance and adherence to traffic rules, while in healthcare, treatment
recommendation systems must avoid unsafe dosage levels or harmful interventions. Similarly,
in robotic manipulation, agents must respect torque and force limits to prevent damage to both
the robot and its environment. Violating such constraints can lead to catastrophic outcomes,
highlighting the need for diffusion-based decision-making models that are inherently safety-aware.

While classifier guidance has shown promise for post-hoc constraint incorporation by steering
generated samples toward safe regions during inference [70], this approach remains limited in
real-time or safety-critical scenarios. For instance, in robot motion planning, classifier-guided
diffusion may correct unsafe trajectories, but it cannot guarantee that all intermediate rollouts
respect joint or velocity constraints, which could be unacceptable in physical systems.
To address these limitations, future work should explore integrating safety-aware objectives

directly into the training process [110]. For example, reward shaping could penalize safety violations
during denoising, encouraging the DM to learn distributions that inherently avoid unsafe actions.
Similarly, constraints such as maximum acceleration or energy budgets could be encoded as
additional conditioning signals, ensuring the safety of the denoising trajectory.
Adapting frameworks such as constrained MDPs or risk-sensitive RL to the diffusion setting is

another promising direction. In constrained MDPs, constraints like collision probability thresholds
can be explicitly incorporated into the optimization objective. Extending this framework to diffusion-
based agents would allow trajectory sampling to be conditioned on both reward maximization
and constraint satisfaction. Likewise, risk-sensitive RL methods, which account for uncertainty
by optimizing for conditional value-at-risk or other safety metrics, could be adapted to DMs to
ensure robust decision-making under stochasticity. For example, in financial trading applications, a
diffusion-based policy could be trained to generate trading strategies that not only maximize profit
but also limit downside risk exposure.
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In summary, while current diffusion approaches rely heavily on post-hoc safety corrections,
future research should move toward intrinsically safe DMs that integrate operational constraints
and risk measures directly into their generative process. This shift is essential for deploying
diffusion-based agents in domains such as autonomous vehicles, robotics, healthcare, and finance,
where safety is not optional but mandatory.

7.5 Handling Partial Observability and Uncertainty
Real-world tasks in RL often involve uncertainty and partial observability, where agents do not
have access to the full environment state. Such scenarios are typically modeled as POMDPs, which
are pervasive in applications like robotics, healthcare, and autonomous navigation. For instance,
a mobile robot navigating through a smoke-filled environment may only perceive local LiDAR
or camera readings, while critical parts of the global map remain hidden. Similarly, in healthcare,
a treatment policy must be derived from incomplete and noisy patient records, where not all
physiological variables are observable. In autonomous driving, occlusions (e.g., vehicles hidden
behind buildings or pedestrians crossing from blind spots) exemplify the challenges of RL under
partial observability.

Extending DMs to POMDPs is therefore essential for enhancing their applicability in such real-
world scenarios. Current DM-based approaches often assume full observability, sampling trajectories
directly from state-action distributions. However, in POMDPs, the agent must maintain and update
a belief state (a probability distribution over possible hidden states) to make robust decisions.
Without this capability, diffusion-based policies may generate infeasible or unsafe trajectories when
crucial information is missing.
Future directions could include the integration of belief states into the denoising process. For

example, a DM could be conditioned not only on observed trajectories but also on a compact
representation of the agent’s belief about the hidden environment. This would allow the generative
process to account for uncertainty explicitly, leading to safer and more robust decisions. Alterna-
tively, memory-augmented architectures could be employed, where recurrent modules (e.g., LSTMs
or GRUs) or attention-based mechanisms (e.g., transformers) are combined with DMs to capture
temporal dependencies and encode histories of past observations. Such hybrid approaches could
help the model infer latent dynamics even when current observations are insufficient.
These directions are inspired by prior work in POMDP policy learning, such as deep recurrent

Q-networks and transformer-based policies [146], which demonstrated that augmenting policies
with memory significantly improves performance in partially observable settings. For example,
in multi-agent pursuit-evasion games, a diffusion-based planner enhanced with a transformer
could maintain a belief about the evader’s hidden location, enabling more coordinated strategies
among pursuers. Similarly, in dialogue systems, where only partial user intent is observable, a
memory-augmented DM could generate more coherent and contextually appropriate responses by
leveraging conversation history.

In summary, bridging DMs with POMDP frameworks through belief modeling, recurrent memory,
or attention-based mechanisms represents a crucial step toward deploying diffusion-driven RL in
real-world, uncertainty-rich environments.

7.6 Scaling to Long Horizons and Sparse Rewards
Long-horizon planning and sparse rewards present major challenges in RL, primarily due to
the difficulty of credit assignment—determining which past actions are responsible for delayed
outcomes. For example, in a robot navigation task, the reward may only be received upon reaching
a distant goal after hundreds of time steps. Similarly, in strategy games such as StarCraft II, winning
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or losing is determined by thousands of intermediate decisions, making it difficult to attribute credit
to specific actions.

In such scenarios, DMs can struggle, as the iterative denoising process tends to accumulate com-
pounding errors across long sequences. A small deviation early in the trajectory may cascade into
significant divergence from the optimal policy. For instance, if a DM generates slightly suboptimal
steering actions in the first few steps of an autonomous driving task, the vehicle may drift toward
unsafe areas, and these errors can amplify over the course of the trajectory.
To address these challenges, hierarchical approaches have been explored. For example, Diffu-

sionDrive [89] decomposes planning into a high-level DM that generates subgoals (e.g., waypoints)
and a low-level controller that executes primitive actions toward these subgoals. This hierarchical
abstraction reduces the effective planning horizon for each model, making credit assignment more
tractable. Similarly, efficient hierarchical diffusion methods [38] structure long-horizon decision-
making by first generating a coarse-grained trajectory outline, then refining it into fine-grained
actions. Such approaches not only improve performance in navigation and locomotion tasks but
also enhance interpretability, as subgoals provide a natural explanation for the model’s decisions.
Another promising direction is trajectory compression techniques, where long sequences are

mapped into compact latent representations. For example, instead of generating hundreds of fine-
grained robot joint movements, a DM could generate a compressed sequence of motion primitives
(e.g., “move forward,” “turn left,” “pick up object”) that are then decoded into detailed motor
commands. This approach is analogous to skill discovery in reinforcement learning, where reusable
behaviors (skills) are learned and recombined to solve complex tasks. In the context of sparse-
reward tasks like robotic manipulation, trajectory compression can help the DM focus on high-level
progress (e.g., reaching and grasping) rather than noisy low-level dynamics.

As a concrete example, in autonomous warehouse robots, a DM could hierarchically plan routes
across multiple aisles (high-level path planning) and then generate detailed wheel control sig-
nals (low-level execution). By abstracting the problem into levels of granularity, the DM avoids
compounding small errors across hundreds of time steps and improves robustness in real-world
deployments. Similarly, in multi-step medical treatment planning, a DM could generate a sequence
of intermediate treatment milestones (e.g., stabilize vital signs, reduce infection) before filling in
the finer details of dosage and scheduling.

In summary, tackling long-horizon credit assignment in DMs requires strategies such as hierar-
chical modeling and trajectory compression, which reduce complexity by structuring the output
space into manageable skills or abstractions, thus improving scalability and robustness for RL.

7.7 Theoretical Foundations and Guarantees
Despite their empirical success, the theoretical understanding of diffusion-based RL models remains
limited. Fundamental questions about expressivity, convergence, and generalization are still largely
unanswered. Unlike conventional policy gradient or value-based RL methods, where convergence
properties can often be established under certain assumptions (e.g., convexity or Lipschitz con-
tinuity), DMs involve iterative denoising with high-dimensional stochastic dynamics, making it
difficult to derive formal guarantees.

One open question concerns the expressivity of DMs as policy classes. While DMs have shown
strong capabilities in modeling complex trajectory distributions, it is still unclear what classes of
policies or trajectory distributions can be efficiently represented. For example, in robotic manip-
ulation, DMs can generate smooth trajectories that capture multimodal strategies (e.g., grasping
an object from different angles). However, whether DMs can universally approximate any tra-
jectory distribution, or under what assumptions they outperform Gaussian mixture models or
autoregressive policies, remains an open theoretical problem.
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Convergence analysis is another challenge. Standard RL policies typically update parameters
toward fixed points defined by Bellman operators, which offers at least a pathway to convergence
guarantees. In contrast, diffusion-based RL involves sampling-based optimization over a denoising
process with dozens or hundreds of stochastic steps. This raises questions about whether training
is guaranteed to converge to an optimal policy, or if it risks collapsing to degenerate solutions.
For instance, in offline RL, where policies are trained from logged datasets, DMs might overfit to
high-density regions of the data while ignoring rare but critical transitions. Understanding whether
training dynamics can avoid such pitfalls is a crucial direction.

A further open issue lies in generalization. In real-world deployment, agents often face environ-
ments with significant distribution shifts. For example, an autonomous drone trained in a controlled
simulation might need to generalize to outdoor environments with wind, sensor noise, and moving
obstacles. While DMs excel at modeling training distributions, it is unclear whether the learned
denoising dynamics can generalize effectively to unseen domains or whether they will degrade due
to compounding errors across timesteps. Existing work such as prompting-based analysis [147]
provides early insights into how conditional inputs guide diffusion sampling, but does not yet
address generalization bounds in sequential decision-making.
Finally, the lack of a rigorous theoretical foundation also limits interpretability and safety

analysis. In safety-critical domains, such as autonomous driving or healthcare decision-making,
it is essential to provide guarantees about worst-case performance, stability, or risk sensitivity.
Without a theoretical basis, practitioners must rely on empirical testing, which may fail to capture
rare but catastrophic failure modes. For example, a diffusion policy that works well in 99% of
driving scenarios could still fail unpredictably in rare edge cases (e.g., unusual pedestrian behavior),
undermining trust and deployment readiness.

In summary, while diffusion-based RL models demonstrate impressive empirical results, the field
lacks a solid theoretical grounding. Future research must tackle questions of expressivity (what
policies DMs can represent), convergence (whether learning dynamics are stable), and generalization
(how models behave under distribution shifts). Addressing these challenges will not only improve
interpretability and safety but also build confidence for deploying DMs in real-world sequential
decision-making tasks.

7.8 Benchmarks and Standardized Evaluation
There is a significant lack of standardized benchmarks to evaluate diffusion-based RL methods. Most
current studies rely on customized experimental setups, making it difficult to compare results across
different works. For example, some papers test on simple locomotion tasks such as HalfCheetah-v2
or Hopper-v2, while others focus on offline robotic datasets (e.g., Franka kitchen manipulation).
Without a consistent evaluation protocol, it is challenging to assess whether improvements stem
from the model itself or from differences in datasets, reward shaping, or implementation details.

Community efforts toward standardization have begun but remain limited. For instance, Diffuser[13]
introduced a framework for trajectory optimization in decision-making using DMs, primarily evalu-
ated onMuJoCo locomotion tasks. Similarly, Decision Diffuser [89] extended this line to autonomous
driving scenarios, offering insights into multi-agent interactions and long-horizon planning. On
the reinforcement learning side, large-scale offline RL datasets such as RLUnplugged [148] provide
a diverse set of benchmarks for policy evaluation, but they are not specifically tailored to diffusion-
based methods and often lack tasks that stress long-horizon credit assignment, partial observability,
or safety-critical decision-making.

Concrete examples highlight this gap. In robotics, diffusion policies are often tested in simulated
environments like D4RL’s kitchen task, where agents must open a microwave or move a kettle.
However, these settings are relatively constrained compared to real-world robot deployments
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involving unstructured environments, human interaction, and safety constraints. In autonomous
driving, datasets like Waymo Open Motion or nuScenes contain rich trajectory information that
could serve as a benchmark, but diffusion-based decision-making studies have only selectively
adopted them, often preprocessing or downsampling to fit their specific training pipeline. Similarly,
in multi-agent RL, benchmarks such as StarCraft II micromanagement or Overcooked-AI are widely
used in RL but have not yet been systematically adapted to diffusion-based approaches.

Therefore, future work should expand benchmark initiatives to cover a wider range of environ-
ments and tasks as follows. 1) Robotics: Standardized manipulation and navigation benchmarks
with both simulation and real-world evaluation. 2) Autonomous Driving: Trajectory forecasting
and decision-making benchmarks with safety metrics. 3) Multi-Agent Systems: Cooperative and
competitive benchmarks where DMs must handle coordination and communication. 4) Safety-
Critical Domains:Healthcare decision-making or industrial control, where robustness and constraint
satisfaction are essential.
Establishing such standardized benchmarks would not only enable fair comparison across

methods but also accelerate progress by identifying the strengths and limitations of diffusion-
based RL in diverse application domains.

7.9 Extending to Online and Continual Learning
Most diffusion-based methods are tailored for offline settings with fixed datasets, where the model
learns from large, static collections of trajectories (e.g., D4RL benchmarks for locomotion or manip-
ulation). While effective in these controlled contexts, such approaches face significant challenges
in real-world scenarios, where agents must adapt continuously to non-stationary data distributions
caused by changing environments, dynamics, or task objectives. For example, a household robot
trained offline on kitchen manipulation may fail if new objects, layouts, or user preferences are
introduced. Similarly, in autonomous driving, policies trained on historical datasets may degrade
when traffic rules change or new driving patterns emerge.

Adapting DMs to the dynamic nature of online RL remains an open problem [107]. Unlike offline
settings where the distribution is fixed, online RL requires constant data collection, exploration, and
adaptation. This creates challenges for DMs since their iterative denoising process is computationally
intensive, making rapid policy updates difficult. Moreover, online interaction exacerbates the risk
of compounding errors if the model fails to generalize outside the training distribution.
To address these challenges, meta-learning and retrieval-augmented strategies show promise.

For example, meta-learning could allow DMs to learn adaptation priors, enabling rapid fine-tuning
when faced with novel tasks, much like how Model-Agnostic Meta-Learning (MAML) accelerates
adaptation in conventional RL. Retrieval-augmented approaches [134], where relevant past expe-
riences are dynamically queried to guide sampling, could help diffusion policies remain robust
under distribution shifts. For instance, in robotic manipulation, retrieval-based DMs could reference
trajectories involving similar object configurations to stabilize learning in unfamiliar scenarios.
At a more conceptual level, the iterative refinement inherent to the denoising process can be

interpreted as performing gradient-like updates in a latent trajectory space. This analogy provides a
new perspective on convergence and expressiveness, suggesting that DMs are implicitly optimizing
trajectories toward high-likelihood or high-reward regions of the behavior space. However, this
interpretation raises important open questions. For example: 1) Sample Complexity: How many
online interactions are needed for DMs to achieve stable convergence compared to policy gradient
or Q-learning methods? 2) Stability: Can denoising dynamics remain stable in online settings where
the trajectory distribution shifts rapidly? 3) Noise Scheduling: How does the choice of forward
diffusion noise schedule influence the balance between exploration and exploitation in online
environments?
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Recent efforts are beginning to explore these issues. For instance, researchers have experimented
with hybrid architectures that integrate diffusion-based policies with value functions to stabilize
training and guide exploration, similar to how actor-critic methods balance policy learning and
value estimation. In robotics, this could mean using a diffusion policy to propose diverse candidate
trajectories while a value function evaluates their feasibility and reward. In autonomous driving,
online adaptation could involve diffusion policies generating trajectory candidates that are then
filtered by safety constraints and real-time traffic data.
In summary, while DMs have demonstrated impressive results in offline RL, their extension

to online, non-stationary environments is still nascent. Tackling these challenges will require
innovations in efficient adaptation mechanisms, exploration-exploitation trade-offs, and robust
noise scheduling strategies. Success in this direction could unlock DMs’ potential in safety-critical
and continuously evolving real-world applications such as robotics, healthcare decision-making,
and autonomous driving.

7.10 Extending to Multi-Agent and Human-in-the-Loop Systems
The complexity of multi-agent and human-interactive environments introduces unique challenges
for DMs, particularly in terms of coordination, communication, and interpretability. Unlike single-
agent settings, where the DM only needs to optimize for one policy, Multi-Agent Reinforcement
Learning (MARL) requires the simultaneous modeling of interdependent strategies. Meanwhile,
each agent’s action not only influences the environment but also changes the decision-making
context of other agents.

For example, in autonomous driving at intersections, multiple self-driving cars must coordinate
their maneuvers to avoid collisions whileminimizing delays. A naive DM that generates independent
trajectories for each car may produce inconsistent behaviors, such as one vehicle yielding while the
other simultaneously accelerates. Extending DMs to MARL settings [149] requires mechanisms that
ensure jointly coherent sampling, so that generated trajectories respect inter-agent dependencies.
One promising approach is to combine DMs with communication protocols (e.g., message-passing
between agents) to allow agents to exchange intent signals before committing to actions. For
instance, a DM could generate both the intended path of a car and an explicit “yield” or “go”
communication message, enabling coordination that mirrors human traffic negotiation.

Another frontier is the integration of DMs into human-in-the-loop systems, where agents must
adapt their behavior in response to human actions, preferences, or feedback. In collaborative
robotics (e.g., factory cobots), a robot arm must anticipate human movements and adjust its
trajectory accordingly. A diffusion-based planner could be extended to model human intentions
explicitly, for instance by conditioning trajectory sampling on predicted human motion patterns
or verbal instructions. Similarly, in assistive healthcare, a DM-driven agent could plan treatment
or rehabilitation sequences that account for both the patient’s current state and expected human
feedback during the process.
Interpretability is another crucial concern. In multi-agent or human-interactive environments,

opaque decision-making can erode trust or lead to unsafe outcomes. For example, if a swarm of
drones uses DMs for coordinated search-and-rescue, operators must understand why drones are
dispersing in certain patterns. One solution is to couple DMs with intention modeling, where
sampled trajectories are mapped to explicit, high-level goals (e.g., “Agent A secures exit route,”
“Agent B explores building interior”). This not only facilitates coordination among agents but also
improves human interpretability of generated actions.
Furthermore, game-theoretic settings such as pursuit-evasion games highlight the difficulty of

multi-agent coordination. In a multi-robot pursuit task, if DMs independently generate chaser
trajectories, they may redundantly cover the same area, leaving other regions unguarded. A
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coordinated DM framework could instead sample complementary strategies, where each robot
covers different escape paths of the evader. Such extensions may be inspired bymulti-agent planning
in POMDPs, where belief-sharing or role assignment reduces redundant exploration.
In summary, extending DMs to multi-agent and human-interactive environments remains an

open but promising frontier. Blending diffusion-based generation with communication protocols,
intention modeling, and coordination mechanisms can enable scalable solutions. By embedding
these elements, DMs can move beyond single-agent optimization toward real-world deployments
involving collaborative robots, autonomous vehicles, and human-AI teams.

7.11 Applying to Large Language Models
Large Language Models (LLMs) have demonstrated remarkable reasoning and decision-making
capabilities in language-based tasks, including question answering, planning, and sequential instruc-
tion following. When combined with DMs, these systems can generate multi-modal, temporally
structured, and constraint-aware trajectories, enabling richer decision-making policies beyond
pure text generation.

For instance, Diffusion-LM [8] and DiffuSeq [82] illustrate how DMs can generate coherent token
sequences under complex future constraints, effectively modeling long-range dependencies in text.
DriveDreamer [108] takes this a step further by incorporating LLM-style reasoning into trajectory
planning frameworks, improving both interpretability and long-horizon goal satisfaction. For
example, in autonomous driving scenarios, the model can reason about multi-step maneuvers—like
lane changes, obstacle avoidance, and turns—by planning trajectories that align with high-level
navigational goals while respecting safety constraints. This combination of reasoning and generative
modeling allows the agent to produce plans that are not only feasible but also explainable, as each
step can be traced back to a high-level rationale.
Recent works explore the use of retrieval-augmented prompts or grounding LLM outputs in

control domains using diffusion-based methods [44, 150–152]. For example, a robot could query a
dataset of prior trajectories to guide a diffusion-conditioned LLM in generating a novel but feasible
manipulation sequence. In automated scientific experiment planning, diffusion-conditioned LLMs
can propose sequences of chemical reactions by grounding symbolic actions in prior experimental
results, ensuring that generated sequences are physically and chemically plausible. Similarly, in
human-robot interaction, retrieval-augmented LLMs can interpret natural language instructions
while DMs generate action sequences that respect physical constraints and safety margins.

By combining the reasoning power of LLMs with the stochastic, expressive trajectory modeling
of DMs, these approaches enable agents to: 1) Perform long-horizon planning in complex envi-
ronments, where decisions depend on future consequences; 2) Incorporate multi-modal inputs
and constraints, such as text instructions, visual observations, and physical state variables; 3)
Enhance interpretability, as each generated trajectory or action sequence can be explained in terms
of high-level reasoning steps or retrieved exemplars.
In summary, the integration of LLMs and DMs represents a promising frontier in decision-

making AI, bridging symbolic reasoning, natural language understanding, and generative trajectory
modeling. Applications range from autonomous driving and robotic manipulation to interactive AI
assistants, scientific experiment design, and multi-agent coordination, demonstrating the versatility
of this hybrid approach. However, it is crucial and challenging for researchers to enable DMs to
handle complex inputs and generate multiple outputs with better performance in LLMs scenarios.

8 Conclusion
DMs have emerged as a powerful class of generative models that are gaining increasing attention
for RL. By leveraging the stochastic denoising process, these models offer a flexible and expressive
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framework for modeling complex, multi-modal distributions over dynamic environments. Unlike
traditional RL and IL, DMs provide a unified approach that integrates learning from data with
generative planning capabilities.
This survey has provided a comprehensive overview of the foundations of DMs, including the

forward diffusion process, reverse denoising process, and key variants such as DDPMs, DDIMs,
and CTDMs. We have discussed how these DMs are applied to the single-agent RL in trajectory
optimization, policy learning, IL, exploration augmentation, environmental simulation, and reward
modeling, the multi-agent RL in joint trajectory optimization and collaborative policy learning, the
online RL, the offline RL, and their emerging theoretical understanding.
We also reviewed a broad spectrum of real-world application scenarios, ranging from robotics

and autonomous driving to game playing and healthcare, highlighting the versatility and potential
of diffusion-based RL models. Furthermore, we identified key open research issues and future
directions, such as sampling efficiency, variance reduction, safety integration, theoretical guarantees,
online learning, and LLM integration.
As the field continues to evolve, DMs are expected to play a critical role in bridging the gap

between generative modeling and RL modeling. Continued interdisciplinary research across ma-
chine learning, control, and real-world systems will be crucial to unlocking their full potential and
enabling scalable and robust RL in complex environments.
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