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In recent years, training methods centered on Reinforcement Learning (RL) have markedly enhanced the reasoning and alignment
performance of Large Language Models (LLMs), particularly in understanding human intents, following user instructions, and
bolstering inferential strength. Although existing surveys offer overviews of RL augmented LLMs, their scope is often limited, failing
to provide a comprehensive summary of how RL operates across the full lifecycle of LLMs. We systematically review the theoretical
and practical advancements whereby RL empowers LLMs, especially Reinforcement Learning with Verifiable Rewards (RLVR). First,
we briefly introduce the basic theory of RL. Second, we thoroughly detail application strategies for RL across various phases of the
LLM lifecycle, including pre-training, alignment fine-tuning, and reinforced reasoning. In particular, we emphasize that RL methods in
the “reinforced reasoning” phase serve as a pivotal driving force for advancing model reasoning to its limits. Next, we collate existing
datasets and evaluation benchmarks currently used for RL fine-tuning, spanning human-annotated datasets, AI-assisted preference
data, and program-verification-style corpora. Subsequently, we review the mainstream open-source tools and training frameworks
available, providing clear practical references for subsequent research. Finally, we analyse the future challenges and trends in the field
of RL-enhanced LLMs. This survey aims to present researchers and practitioners with the latest developments and frontier trends at
the intersection of RL and LLMs, with the goal of fostering the evolution of LLMs that are more intelligent, generalizable, and secure.
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1 Introduction
Large Language Models such as ChatGPT [126] have risen rapidly demonstrating remarkable performance across
various tasks, including general dialogue [9], code generation [105], andmathematical reasoning [40], and have gradually
become essential cornerstones for interactive artificial intelligence systems [20, 21, 89, 98, 205, 206]. Despite their broad
generalization capabilities, current LLMs still struggle with crucial shortcomings: they often fail to reliably capture
nuanced human intentions and can produce misleading or unsafe outputs [11, 14, 43, 81, 158, 185]. Moreover, several
recent studies [65, 123, 151] have indicated that the reasoning capabilities of LLMs still exhibit substantial shortcomings.
Therefore, effectively aligning the generative capabilities of LLMs with human preferences, values, and specific task
requirements, as well as enhancing their reasoning abilities for addressing complex problems, has emerged as one of
the significant challenges in current LLM research. In response, RL has been introduced as a powerful framework to
address these challenges by directly optimizing model behavior through interactive feedback and reward signals. Table
1 shows the performance improvement of typical models after being trained with RL compared to their baselines.

Table 1. This table compares representative models trained with RL against their baseline counterparts, showing that RL substantially
enhances the performance of foundation models and underscoring the critical importance of reinforcement learning. Among them,
Magistral Small-SC∗ and Magistral Small-RL# refer to Magistral Small-24B-Starting Checkpoint and the result of this model trained
only through reinforcement learning, respectively.

Model / Benchmark AIME2024 GPQA-Diamond LiveCodeBench MATH-500 MMLU SWE-benchVerified

DeepSeek-V3 [102] 39.2 59.1 36.2 90.2 88.5 42.0

DeepSeek-R1-Zero [48] 71.0 (+31.8) 73.3 (+14.2) 50.0 (+13.8) 95.9 (+5.7) – –

DeepSeek-R1 [48] 79.8 (+40.6) 71.5 (+12.4) 65.9 (+29.7) 97.3 (+7.1) 90.8 (+2.3) 49.2 (+7.2)

Magistral Small-SC∗ [139] 32.2 63.4 (GPQA, +SFT) 22.7 (v5) 93.2 (+SFT) – –

Magistral Small-RL# [139] 65.8 (+33.6) 68.8 (GPQA, +5.4) 46.4 (v5, +23.7) 95.4 (+2.2) – –

GPT-4o-0513 [69] 9.3 49.9 32.9 74.6 87.2 38.8

OpenAI-o1-1217 [70] 79.2 (+70.2) 75.7 (+25.8) 63.4 (+30.5) 96.4 (+21.8) 91.8 (+4.6) 48.9 (+10.1)

Since the seminal introduction of Reinforcement Learning from Human Feedback (RLHF) by Ouyang et al. [129],
RL-based fine-tuning has become a cornerstone method for improving LLM alignment with human instructions and
preferences. By leveraging human evaluative feedback or learned reward models, RLHF enables models to iteratively
adjust their outputs toward more preferred and helpful responses, going beyond what supervised training alone
can achieve. Building on the success of RLHF for alignment, researchers have more recently begun to apply RL
paradigms to bolster reasoning capabilities. Notably, starting around 2024, a series of advanced LLMs demonstrated
substantial improvements on complex reasoning tasks (e.g., in mathematics and programming) by employing test-time
or post-training RL techniques. High-profile examples include OpenAI’s o1 system [70], Anthropic’s Claude 3.7/4 [3],
Manuscript submitted to ACM
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DeepSeek R1 [48], the Kimi K1.5 [160], and Qwen 3 [204] etc., all of which integrate reinforcement-driven reasoning
strategies during inference. These successes suggest that reinforcement learning, when applied at the inference or
post-training stage, can unlock new problem-solving abilities in LLMs beyond their pre-trained knowledge. A key
innovation underlying these recent advances is the paradigm of Reinforcement Learning with Verifiable Rewards
(RLVR) [48, 87, 204], which augments the standard RL loop with objective, automatically verifiable reward signals,
such as programmatic checks or proofs of correctness on the model’s output. By rewarding an LLM for producing
outputs that pass rigorous correctness tests (e.g., unit tests for code or theorem verifications for math), RLVR directly
incentivises the model to generate reliably correct and logically sound solutions. This approach has been a driving
force behind the aforementioned reasoning improvements, effectively pushing models to reason through multi-step
problems until a verifiable correct result is found. Nevertheless, the integration of RL into LLM training and usage
raises several open questions and limitations. First, it remains under debate to what extent RLVR truly expands the
LLM’s reasoning capabilities beyond what was learned during pre-training [190, 218, 235]. Second, there is no clear
consensus on how different RL techniques should be best applied at various stages of the LLM lifecycle, ranging
from pre-training and instruction alignment to post-training inference optimization. Third, practical issues of data
curation and optimization strategy in RL remain challenging: e.g., constructing high-quality reward datasets via human
preference labels, AI-assistant preferences, or programmatic rewards and choosing appropriate RL algorithms such as
policy gradients versus reward model optimization are non-trivial design decisions. Finally, the question of how to
implement RL fine-tuning efficiently at scale without destabilizing the model’s performance is still not fully resolved.

In light of these gaps, this survey aims to provide a systematic and comprehensive review of recent progress in
RL-enhanced LLMs, with particular focus on developments in the highly influential RLVR paradigm, especially with
rapid developments since 2025. We aim to clarify the role of RL methods in the entire LLM training pipeline and their
contributions to advancing the frontiers of model alignment and reasoning. Specifically, we offer in-depth analysis and
discussion along multiple dimensions: (1) the theoretical foundations of applying RL to LLMs; (2) application strategies
detailing how RL is integrated at different training stages, including initial pre-training, alignment fine-tuning, and
post-training inference-time reasoning; (3) the datasets and benchmarks used to train and evaluate RL-fine-tuned LLMs;
and (4) the emerging tools and frameworks that support large-scale RL training for LLMs. By organizing the survey
along these axes, we aim to provide researchers and practitioners with a clear roadmap of the field’s current state,
insights into the efficacy and limitations of various RL techniques especially RLVR, and well-supported guidance for
future work in leveraging RL to make LLMs more aligned, powerful, and reliable.

1.1 Related Surveys

In recent years, numerous surveys [8, 12, 15, 16, 51, 72, 75, 78, 80, 85, 134, 154, 169, 178, 197, 224, 239, 240, 244] have
reviewed reinforcement learning research related to large language models and proposed various classification schemes.
Existing surveys have proposed a variety of classification schemes, but often with a limited scope. For example, some
studies [78, 178, 239] narrowly focus only on RL-based alignment techniques, organizing their taxonomies primarily
around the use of reward models while overlooking important emerging approaches. Although several works in 2025
have attempted to summarize research on RL at inference time [8, 12, 80, 197, 240], these reviews are often partial and
fail to provide a holistic examination of reinforcement-at-inference across its multiple dimensions. Pternea et al. [134]
discuss the synergy between RL and LLMs, but their analysis is largely limited to the perspective of bidirectional RL–LLM
collaboration. Zhu et al. [244] focuses exclusively on the narrow domain of Concise and Adaptive Thinking. While these
survey frameworks offer value, they remain constrained to specific viewpoints and lack a unified, end-to-end lifecycle
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4 Keliang Liu et al.

A Taxonomy of RL Enhanced LLMs

Pre-training (§3.1)
RL in Pre-training Loop (§3.1) Reinforcement Pre-Training [31], OctoThinker [181], Visual Pre-Training [45], etc.

Alignment (§3)

Classic Algorithms (§3.2)

RLHF and Reward Modeling InstructGPT [129], Bai et al. [6], Text2Reward [195], Xiong et al. [196], Eureka [120],
Kwon et al. [86], Wang et al. [168], Fu et al. [41], Miao et al. [121, 122], etc.

Preference Optimization DPO [137], KTO [34], ΨPO [5], Smaug [131], 𝛽-DPO [192], SPO [157], ORPO [58], etc.

AI Feedback Constitutional AI [7], RLAIF [88], etc.

New Methods4RM Design (§3.3)
Principle/AI-generated Rewards RewardAnything [217], AUTORULE [170], Generalist Reward Models [95], etc.

Reasoning Reward Model RRMs [49], GenPRM [234], RM-R1 [23], Wang et al. [174], Liu et al. [114], etc.

RLVR (§4)

Algorithmic Advances (§4.2)

Type R1 and its improvements
GRPO [147], Deepseek R1 [48], DAPO [216], Hu et al. [63], X-Reasoner [108],
TANGO [219], Zhou et al. [243], Kimina-Prover [166], Magistral [139],
MiniMax-M1 [17], GSPO [237], etc.

Hybrid learning strategy Zhang et al. [229], Yan et al. [202], SuperRL [110], KDRL [198], etc.

Adversarial/Structured/
Multi-agent SPIRAL [103], R2-Reasoner [146], Graph-R1 [117], etc.

Tree structure ToTRL [191], TreeRPO [209], TreeRL [60], etc.

Multimodal reasoning (§4.3)

Vision-language reasoning Vision-R1 [68], Visual-RFT [113], VLM-R1 [148], Deng et al. [29], Ma et al. [119],
Zhou et al. [241], VisuLogic [199], R1-VL [222], GLM-4.1V-Thinking [59], etc.

Video/Spatial and
Embodied Reasoning

Video-R1 [38], TinyLLaVA-Video-R1 [227], 3D-R1 [67], Liao et al. [100],
Ouyang et al. [128], Embodied-R [233], Ego-R1 [161], VAU-R1 [246], etc.

o3 style GPT o3 [127], DeepEyes [238], GThinker [220], etc.

Generation and pure vision T2I-R1 [73], DanceGRPO [201], Visual Planning [200], etc.

Enhanced reasoning Hint-GRPO [66], Liu et al. [104], SRPO [164], Wang et al. [173], VGR [167], etc.

Tasks in professional fields VLN-R1 [135], Chen et al. [24], VAU-R1 [246], ARMed [111], CAD-Coder [47], etc.

Adaptive thinking (§4.4)

Length Penalty S1 [125], L1 [2], Shorterbetter [213], etc.

Thinking Mode &
Difficulty-awareness AdaptThink [223], AdaCoT [23], Zhang et al. [225], Wang et al. [177], etc.

GRPO-Variant RRMs [49], DeGRPO [36], HGPO [74], Wang et al. [174], etc.

Agents/Tool-use (§4.5)

Tool/Action Space RLVR AGILE [132], Search-R1 [76], ToRL [94], ReTool [37], OpenThinkImg [155],
Tool-Star [30], etc.

Long-term Reward Design LARM [96], RAGEN [180], ShopR1 [230], Zhang et al. [228], SPA-RL [165],
Feng et al. [39], etc.

Agent Memory MemAgent [215], RMM [159], M3-Agent [115], Memory-R1 [203], etc.

RLIF/Internal Feedback (§4.6)
Internal Signal Reward Kang et al. [77], Li et al. [92], van Niekerk et al. [162], Zhang et al. [231], etc.

Self-generation Optimization TTRL [249], Zhao et al. [232], Zhao et al. [236], SLOT [64], etc.

Experimental Findings (§4.1)

Capability Boundaries Yue et al. [218], ProRL [107], Liu et al. [112], Zhao et al. [235], Shah et al. [145],
Wu et al. [190], etc.

Training Dynamics
& Entropy Signals

Cui et al. [28], Li et al. [91], Ma et al. [118], Samineni et al. [142], Bogdan et al. [13],
He et al. [55], Chen et al. [19], Wang et al. [168] etc.

Data & Reward Conditions Wu et al. [193], Zhu et al. [248], Shojaee et al. [151], etc.

Datasets & Benchmarks (§5)

Synthetic Data Generation Zhu et al. [4], Goldie et al. [46], Synthetic Data RL [50], SwS [99], etc.

Alignment/Dialogue HHH [4], HH-RLHF [6], IFEval[242], Arena-Hard[93], AlignBench[109],
Creative Writing[130], etc.

Code APPS [32], LiveCodeBench [71], SWE-bench [90], SWE-bench Verified [207],
OJBench [179], etc.

Math GSM8K [26], MATH [56], OlympiadBench [54], Minerva Math [90], PolyMath [176],
AMC2023, AIME2024/2025, CNMO2024, HMMT2025, etc.

General / Knowledge & STEM
MMLU [57], MMLU-Redux[44], MMLU-Pro [175], GPQA [140], SuperGPQA [33],
TheoremQA [22], Guru [25], SimpleQA [184], HLE [133], LiveBench [186], PhyX [149],
BBH [153], BBEH [79], MMReason [211], etc.

Logic Reasoning AutoLogi [247], ZebraLogic [101], etc.

Tools / Multi-turn / Agent 𝜏2-Bench [10], ACEBench [18], MultiChallenge [152], etc.

Open-source Tools
&Frameworks (§6)

General & End-to-End
Frameworks

VeRL [150], ColossalChat [214], DeepSpeed-Chat [212], TRL [163], RL4LMs [138],
LlamaRL [189], trlX [53], AReaL [42], DistFlow [182] OpenRLHF [62], etc.

RL Training Library
/Package Nemo RL [1], FlashRL [106], ROLL [171], Yao et al. [210], etc.

Fig. 1. A taxonomy of RL enhanced LLMs. This figure presents a taxonomy of the key stages and resources involved in creating
RL-enhanced LLMs, organized into five branches: pre-training, alignment, RLVR, datasets & benchmarks, and open-source frameworks.
The taxonomy clarifies the interconnections between stages, serving as a roadmap for understanding methodological advancements
and resources discussed in the survey.
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Table 2. Comparative Analysis Table of Representative Surveys: The comparison is conducted across five dimensions—lifecycle
coverage, dataset and benchmark summarization, tool/framework collection and practicality, breadth and timeliness of citations, and
future outlook and challenges.

Survey ↓ / Dimension→ Lifecycle Coverage Datasets&Benchmarks Tools / Frameworks
Citation Breadth
& Timeliness

Future Directions
& Challenges

Wang et al. [178] × (Alignment only) × (Limited mention) × (Not covered) × (Insufficiently up-
dated)

✓ (Future directions
mentioned)

Srivastava et al. [154] × (Alignment + Rea-
soning)

× (For demonstrating
performance only)

× (Not covered) ✓ (Covers up to 2025) ✓ (Dedicated section)

Wang et al. [169] × (Mainly Alignment) × (Limited mention) × (Not covered) ✓ (Covers early 2025) ✓ (Simpler discus-
sion)

Cao et al. [15] × (Not all covered) × (Not covered) × (Not covered) × (Not included) ✓ (Dedicated section)
Chaudhari et al. [16] × (Alignment only) × (Limited mention) × (Not covered) × (Focus on RLHF

only, outdated)
✓ (In-depth analysis)

Kaufmann et al. [78] × (Alignment only) ✓ (Dedicated section) ✓ (Library support
mentioned)

× (Relatively early) ✓ (Brief analysis)

Our Survey ✓ (Full coverage) ✓ (Dedicated section) ✓ (Well organized) ✓ (Covers latest work) ✓ (In-depth analysis)

perspective on RL–LLM interactions. In contrast, our survey systematically investigates the role of RL throughout
the entire LLM training pipeline (ranging from pre-training and alignment fine-tuning reasoning) and proposes an
organizational framework that, to the best of our knowledge, has not been comprehensively addressed in prior research.
Table 2 summarizes the advantages and disadvantages of our survey compared with other representative surveys.

1.2 Contribution Summary

This survey provides a structured review of RL techniques for LLMs, with three distinctive contributions:

• Lifecycle Organization:We systematically cover the full lifecycle of RL for LLMs, detailing each stage of the
process, from pre-training, alignment, to reinforcement for reasoning. In doing so, we clarify the objectives,
methodologies, and challenges encountered at each phase. This organization helps in understanding how RL
techniques are applied and refined throughout the LLM development lifecycle.
• Advanced RLVR Technology Focus: This paper highlights state-of-the-art approaches in RLVR. We provide
an in-depth analysis of the experimental phenomena and cutting-edge applications of RLVR, exploring the
methodologies used to ensure that rewards are objective and verifiable. Additionally, we discuss how verifiable
rewards contribute to improved model performance and alignment, showcasing the strengths and limitations of
RLVR in real-world applications.
• Consolidated Resources: We summarize the datasets, benchmarks, and open-source frameworks that are
critical for RL-based experimentation, evaluation, and practical implementation in LLMs. By aggregating this
information, we provide a valuable resource for future researchers looking to experiment with RL techniques in
the context of LLMs. The inclusion of these resources enhances the reproducibility and transparency of RL-driven
LLM research.

To provide an organizational roadmap, Figure 1 presents a comprehensive taxonomy, which divides existing approaches
into five branches: pre-training, alignment, RLVR, datasets & benchmarks, and open-source frameworks. As outlined in
Figure 2, our review is organized around the full RL lifecycle for LLMs, with a particular emphasis on RL with verifiable
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6 Keliang Liu et al.

rewards. In summary, this survey delivers a lifecycle-based synthesis of methods, with particular emphasis on RLVR,
complemented by practical resources for research and application.

RLVR Reasoning
(Section 4)

Datasets & Benchmarks
(Section 5)

Pre-training & Alignment
(Section 3)

Tools & frameworks
(Section 6)

Alignment 
bench

Reasoning
bench

Synthetic 
dataset

Alignment &
reasoning 
dataset

User input

ParallelWork

Auto Mapping

Resource Pool

Physical Devices

Reasoning 
model

R1 o1

GRPO paradigm 

RL4pre-training

Alignment with human 
intentions

RL Enhanced LLMs

Fig. 2. Key components in RL-enhanced LLMs. This figure illustrates the key components and their interactions within the lifecycle
of RL-enhanced LLMs. Driven by RL frameworks and toolkits, RL algorithms participate in the pre-training, alignment, and reasoning
enhancement training of LLMs, and are validated through test benchmarks.

2 Preliminaries of Reinforcement Learning
Reinforcement learning enables agents to learn optimal policies through interaction with the environment, aiming
to maximize cumulative rewards. A typical RL problem can be modelled as a Markov Decision Process (MDP), which
consists of a state space, an action space, a state transition probability distribution, and a reward function. At each
timestep, the agent selects an action 𝑎 based on the current state 𝑠 , receives an immediate reward 𝑟 , and transitions to a
new state 𝑠′ according to the environment dynamics. The objective of the agent is to learn an optimal policy 𝜋∗ that
maximizes the expected long-term cumulative reward over the course of interactions. To achieve this objective, RL
algorithms have evolved along two primary paradigms: policy-based and value-based learning. The former directly
focuses on optimizing the policy, often through policy gradient methods; the latter emphasizes estimating the value of
states or actions, from which the policy is derived indirectly. This section introduces representative algorithms and
theoretical foundations of these two RL paradigms, and further discusses their applications in LLM training.
Manuscript submitted to ACM
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2.1 Policy Learning

Policy learning methods directly optimize the policy 𝜋 (𝑎 |𝑠;𝜃 ), typically without explicitly learning an environment
model or value function. A common approach is the policy gradient method, which adjusts policy parameters 𝜃 in the
parameter space through gradient ascent to maximize expected returns. REINFORCE [187] is the most fundamental
Monte Carlo policy gradient method. It directly estimates the gradient of the expected return with respect to the policy
parameters, where the objective is defined as 𝐽 (𝜃 ) = E[𝑅], with 𝑅 denoting the cumulative return. By applying the
log-derivative trick for stochastic policies, an unbiased estimator of the policy gradient can be derived as:

∇𝜃 𝐽 (𝜃 ) = E𝜏∼𝜋𝜃

[
𝑇∑︁
𝑡=0
∇𝜃 log𝜋𝜃 (𝑎𝑡 |𝑠𝑡 )𝑅𝑡

]
. (1)

Here, 𝜏 = (𝑠0, 𝑎0, 𝑟0, . . . , 𝑠𝑇 ) denotes a trajectory, and 𝑅𝑡 =
∑𝑇

𝑘=𝑡
𝛾𝑘−𝑡𝑟𝑘 is the discounted return starting from timestep 𝑡 ,

where 𝛾 is the discount factor. Intuitively, this formulation implies that increasing the probability of taking action 𝑎𝑡

in state 𝑠𝑡 is positively correlated with the cumulative reward obtained thereafter [156]. After sampling a complete
trajectory, REINFORCE updates the policy parameters using the estimated gradient as 𝜃 ← 𝜃 +𝛼∇𝜃 𝐽 (𝜃 ), where 𝛼 is the
learning rate. To reduce the variance of the gradient estimator, a common technique is to introduce a baseline function
𝑏 (𝑠), which depends only on the state. Subtracting this baseline from the return does not bias the gradient estimate but
can significantly reduce its variance. The policy gradient estimator with a baseline is thus written as:

∇𝜃 𝐽 (𝜃 ) = E

[∑︁
𝑡

∇𝜃 log𝜋𝜃 (𝑎𝑡 |𝑠𝑡 ) (𝑅𝑡 − 𝑏 (𝑠𝑡 ))
]
. (2)

𝐴𝑡 = 𝑅𝑡 − 𝑏 (𝑠𝑡 ) is the advantage function, which measures how much the actual return exceeds the baseline, reducing
the variance of the gradient estimator without altering its expectation.

The Actor-Critic (AC) method [82] combines policy gradient techniques with value function approximation by
integrating two components within a unified framework: the actor, which selects actions according to a parameterized
policy 𝜋𝜃 (𝑎 |𝑠), and the critic, which evaluates the policy using a parameterized value function 𝑉𝜙 (𝑠) or action-value
function 𝑄𝜙 (𝑠, 𝑎). At each timestep, the AC algorithm alternates between: (1) the critic estimating the advantage
𝐴(𝑠, 𝑎) = 𝑄 (𝑠, 𝑎) −𝑉 (𝑠) or the Temporal-Difference (TD) error 𝛿 = 𝑟 + 𝛾𝑉 (𝑠′) −𝑉 (𝑠); and (2) the actor updating the
policy parameters along the direction of the policy gradient, weighted by the low-variance estimate provided by the
critic, i.e., using ∇𝜃 log𝜋𝜃 (𝑎 |𝑠) · 𝐴(𝑠, 𝑎) as the gradient.

Trust Region Policy Optimization (TRPO) [143] aims to address the instability that can arise from large policy updates.
TRPO formulates policy optimization as a constrained optimization problem: it maximizes the expected advantage
under the old policy 𝜋old, while constraining the KL divergence between the new and old policies to remain below a
threshold 𝛿 . The formal objective is given by:

max
𝜃

𝐿(𝜃 ) = E𝑠∼𝜋old

[∑︁
𝑎

𝜋𝜃 (𝑎 |𝑠)
𝜋old (𝑎 |𝑠)

𝐴𝜋old (𝑠, 𝑎)
]
,

s.t. E𝑠∼𝜋old [𝐷KL (𝜋old (·|𝑠) ∥ 𝜋𝜃 (·|𝑠))] ≤ 𝛿.

(3)

Proximal Policy Optimization (PPO) [144] is a landmark innovation of traditional policy gradient algorithms in the era
of deep reinforcement learning. The core contribution is a clipped surrogate objective that allows multi-step gradient
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updates without policy collapse. Specifically, PPO uses the objective function:

𝐿PPO (𝜃 ) = E𝑡 [min(𝑟𝑡 (𝜃 )𝐴𝑡 , clip(𝑟𝑡 (𝜃 ), 1 − 𝜖, 1 + 𝜖)𝐴𝑡 )] . (4)

Here, 𝑟𝑡 (𝜃 ) represents the probability ratio of the old and new policies on the action at time 𝑡 , 𝜖 is the threshold, and
𝐴𝑡 is the advantage estimate. This objective enables optimization according to the standard policy gradient when the
magnitude of the policy change is within the threshold; once it exceeds the threshold, the gradient is weakened, thereby
ensuring that a single update will not cause the policy to deviate too far from the original policy.

In LLM fine-tuning, PPO optimizes parameters via reward scores with a value network baseline for efficient advantage
estimation, but despite its stability and success in RLHF alignment, reasoning tasks face added memory/computation
costs from the extra value network and instability in long sequences due to inaccurate value estimates. To address this
issue, as well as the low learning efficiency in traditional RLHF settings where only one response is scored at a time, the
DeepSeek team proposed Group Relative Policy Optimization (GRPO) in DeepSeekMath [147]. The core idea of GRPO
is to sample a set of outputs for each prompt and use the relative differences in intra-group feedback to guide policy
updates. Specifically, for each question-answer pair, the behavioral policy of GRPO generates 𝐺 different answers at
once (forming a group). Then, each answer is assigned a reward value 𝑅𝑖 through a reward model or predefined rules.
Instead of training a separate value function to estimate a global baseline, GRPO adopted the intra-group average reward
as the benchmark: it calculates the average or a certain statistic of the rewards of all answers in the group, and defines
the advantage of each answer as 𝐴𝑖 = 𝑅𝑖 − 𝑅group. In this way, answers with rewards higher than the group average
gain positive advantages, while those lower than the average gain negative advantages. Subsequently, GRPO constructs
a clipped policy objective function similar to PPO, and through gradient ascent, it increases the probability of answers
with positive advantages and decreases the probability of answers with negative advantages. Since the group average
serves as a dynamic baseline, advantages can be calculated without additional training of a value network, thereby
simplifying the algorithm structure. For a specific question-answer pair (𝑞, 𝑎), the behavioral policy 𝜋𝜃old samples and
generates 𝐺 independent responses {𝑜𝑖 }𝐺𝑖=1. Subsequently, the advantage value of the i-th response is calculated by
normalizing the group-level rewards:

𝐴𝑖,𝑡 =
𝑟𝑖 −max({𝑅𝑖 }𝐺𝑖=1)

std({𝑅𝑖 }𝐺𝑖=1)
. (5)

Similar to PPO, GRPO employs a clipped objective function and directly introduces a KL penalty term. The objective
function of GRPO is as follows:

JGRPO (𝜃 ) = E(𝑞,𝑎)∼D,{𝑜𝑖 }𝐺𝑖=1∼𝜋𝜃old ( · |𝑞)[
1
𝐺

𝐺∑︁
𝑖=1

1
|𝑜𝑖 |

|𝑜𝑖 |∑︁
𝑡=1

(
min

(
𝑟𝑖,𝑡 (𝜃 )𝐴𝑖,𝑡 , clip

(
𝑟𝑖,𝑡 (𝜃 ), 1 − 𝜀, 1 + 𝜀

)
𝐴𝑖,𝑡

)
− 𝛽𝐷KL (𝜋𝜽 | |𝜋ref )

)
.

(6)

2.2 Value Learning

Value-based methods aim to indirectly derive the optimal policy by estimating value functions. A value function
quantifies the expected long-term utility of a state or state-action pair under a given policy. Typical examples include the
state-value function 𝑉 𝜋 (𝑠) = E𝜋 [𝑅 | 𝑠] and the action-value function 𝑄𝜋 (𝑠, 𝑎) = E𝜋 [𝑅 | 𝑠, 𝑎]. Value-based algorithms
focus on approximating the optimal value function 𝑉 (𝑠) or 𝑄 (𝑠, 𝑎), and then deriving the optimal policy by following
the value maximization principle—e.g., selecting the action with the highest estimated value at each state.
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Q-learning [183] adopted a model-free, off-policy learning approach to approximate the optimal action-value function
𝑄∗ (𝑠, 𝑎). The core idea is to iteratively update value estimates for state-action pairs, guided by the Bellman optimality
equation. The basic Q-learning update rule is given by:

𝑄𝑛𝑒𝑤 (𝑠𝑡 , 𝑎𝑡 ) ← 𝑄 (𝑠𝑡 , 𝑎𝑡 ) + 𝛼
[
𝑟𝑡 + 𝛾 max𝑎′ 𝑄 (𝑠𝑡+1, 𝑎

′) −𝑄 (𝑠𝑡 , 𝑎𝑡 )
]
, (7)

where 𝛼 denotes the learning rate, and 𝛾 is the discount factor. The update rule corrects the current estimate𝑄 (𝑠𝑡 , 𝑎𝑡 ) by
incorporating the temporal-difference (TD) error: 𝛿 = 𝑟 + 𝛾 max𝑎′ 𝑄 (𝑠𝑡+1, 𝑎

′) −𝑄 (𝑠𝑡 , 𝑎𝑡 ), which reflects the discrepancy
between the newly estimated return and the previous estimate of 𝑄 (𝑠𝑡 , 𝑎𝑡 ). In each step, Q-learning collects experience
tuples (𝑠𝑡 , 𝑎𝑡 , 𝑟𝑡 , 𝑠𝑡+1) using exploration strategies such as 𝜖-greedy, and then updates the corresponding 𝑄 value. Under
suitable conditions, the 𝑄 (𝑠, 𝑎) values converge to the true optimal action-value function 𝑄∗ (𝑠, 𝑎) in the long run. Since
each update relies on the estimated maximum reward at the next state, i.e., max𝑎′ 𝑄 (𝑠𝑡+1, 𝑎

′), rather than the action
actually taken, Q-learning is categorized as an off-policy method. This allows it to learn from historical data or samples
generated by different policies. However, this also introduces an overestimation bias: the maximization step can yield
upward-biased value estimates. In practice, several improvements have been proposed, such as Double Q-learning [52],
which mitigates overestimation by maintaining two separate value estimators.

SARSA [141] is another temporal-difference-based value learning method. In contrast to Q-learning, SARSA is an
on-policy algorithm: it evaluates the action values according to the currently executed policy and updates the estimates
using samples collected from the same policy. The SARSA update rule is given by:

𝑄𝑛𝑒𝑤 (𝑠𝑡 , 𝑎𝑡 ) ← 𝑄 (𝑠𝑡 , 𝑎𝑡 ) + 𝛼
[
𝑟𝑡 + 𝛾𝑄 (𝑠𝑡+1, 𝑎𝑡+1) −𝑄 (𝑠𝑡 , 𝑎𝑡 )

]
. (8)

Unlike Q-learning, which uses the maximal action at the next state 𝑠𝑡+1, SARSA relies on the action 𝑎𝑡+1 actually taken
by the agent according to the current policy (e.g., 𝜖-greedy). This implies that SARSA updates the estimate of 𝑄𝜋 (𝑠, 𝑎)
under the current policy 𝜋 . As the policy gradually improves toward a greedy strategy, the SARSA estimates of 𝑄
progressively approach the optimal 𝑄∗.

Deep Q-Network (DQN) [124] represents a breakthrough in value-based methods by introducing neural function
approximation into Q-learning. The core idea of DQN is to use a deep neural network 𝑄 (𝑠, 𝑎;𝜃 ), parameterized by 𝜃 , to
approximate the action-value function. By adjusting the network parameters, 𝑄 (𝑠, 𝑎;𝜃 ) outputs value estimates for
all possible actions given a state input. DQN adopted the Q-learning target to train this network, aiming to make the
predicted 𝑄-values satisfy the Bellman optimality equation. Specifically, given a transition (𝑠, 𝑎, 𝑟, 𝑠′) sampled from the
experience replay buffer, DQN minimizes the difference between the predicted Q-value and the TD target using the
mean squared error loss:

𝐿(𝜃 ) =
(
𝑟 + 𝛾 max

𝑎′
𝑄 (𝑠′, 𝑎′;𝜃−) −𝑄 (𝑠, 𝑎;𝜃 )

)2
. (9)

Here, 𝜃− denotes the parameters of the target network, which is periodically synchronized from the training network
parameters 𝜃 , but kept fixed between updates. This dual-network mechanism enhances training stability by preventing
divergence caused by simultaneous changes in both the target and prediction values.

In the domain of LLMs, value-based methods are not the primary components of training frameworks such as RLHF.
This is largely due to the immense and complex action space in LLMs, making it infeasible to explicitly construct Q-tables
or networks that evaluate the value of every possible output, as in standard reinforcement learning environments.
Nonetheless, the conceptual foundations of value learning still manifest in LLM reinforcement learning. For instance,
Wang et al. [172] adopted a Q-learning-based framework to dynamically select in-context exemplars. By computing a
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diversity score over label distributions among selected demonstrations, the framework jointly maximizes both diversity
and task relevance, effectively guiding LLMs to generate more informative references for text classification.

3 Reinforcement Learning Methods in the Pre-training Phase and Alignment Phase

3.1 Reinforcement Learning Methods in the Pre-training Phase
Most current reinforcement learning enabled tasks for LLMs are mainly focused on the alignment and fine-tuning
phases of the models. However, Dong et al. [31] reconstructed the next-token prediction task in pre-training into an
RL-based reasoning task, allowing the model to obtain verifiable rewards when correctly predicting the next token
in a given context, thereby introducing reinforcement learning into pre-training tasks. Nevertheless, this method
consumes excessive resources and requires an excellent model with existing reasoning capabilities as the base model
for training. Ghosh et al. [45] introduced RL into visual pre-training with Annotation Bootstrapping, framing unlabeled
image pre-training as an RL problem and arguing that common self-supervised methods like crop-consistency resemble
value learning. OctoThinker [181] proposed to significantly improve the compatibility of basic language models with
reinforcement learning through a two-stage mid-training strategy, enabling the Llama series, which was originally
unsuitable for RL, to reach the same level as Qwen in mathematical reasoning tasks. It reveals the key role of mid-training
data quality, style, and scheduling strategies in RL scaling. Mid-training refers to self-supervised training conducted in
the same way as pre-training, i.e., through next-word prediction, but with a different goal. The goal of mid-training is
to transform the pre-trained model to make it suitable for RL training, and the training data is converted from massive
amounts of text to high-quality, task-related data.

3.2 Classic Algorithms in the Alignment Phase
Christiano et al. [129] established a foundational paradigm for modern LLM alignment, demonstrating that incorporating
human preferences into fine-tuning significantly improves the helpfulness and safety of instruction following behaviour.
Bai et al. [6] found that RLHF-based alignment training enhances performance across nearly all NLP evaluation tasks
and is fully compatible with domain-specific skills such as Python programming and summarisation. Xiong et al. [196]
reinterpreted RLHF from an information theoretic perspective, proposing an iterative optimization framework that
controls alignment bias via KL regularization and drives data acquisition based on uncertainty estimates. SPO [157]
modeled human preference as a minimax winner in a zero-sum game and directly optimized the policy through
self-play, providing theoretical guarantees of robust convergence under non-transitive, non-Markovian, and stochastic
preferences. Wang, Fu, and Miao et al. [41, 121, 122, 168] explored methods for mitigating the issue of reward hacking.

Bai et al. [7] proposed Constitutional AI, a framework in which artificial intelligence systems supervise other AI
agents to train a harmless assistant through self-improvement without relying on human-labelled data identifying
harmful outputs. The only human oversight is provided through a predefined set of rules or principles. RLAIF [88]
(Reinforcement Learning with AI Feedback) leveraged existing large language models to generate preference labels
without the involvement of human annotators, achieving performance improvements comparable to those of RLHF.

Traditional RLHF requires first training a reward model and then optimizing the policy through RL. This two-stage
process is complex and may be unstable. In 2023, Rafailov et al. [137] introduced the Direct Preference Optimization
(DPO) method, a training paradigm that eliminates the need for explicit reinforcement learning. It has been proven
that under certain assumptions, it can bypass explicit reward modeling and RL optimization, and directly fine-tune the
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pre-trained language model to the optimal policy indicated by preference data through a simple loss function. Azar et
al. proposed a unified theoretical framework ΨPO [5], which systematically characterizes the fundamental connections
and limitations between RLHF and DPO. Smaug [131] provided a theoretical analysis showing that DPO can fail to
preserve the likelihood of preferred sequences when the preference data involves small edit distances. To address this,
they introduced a regularized variant, DPOP, which augments the loss with a lower bound constraint on the preferred
sequence likelihood. 𝛽-DPO [192] improved the robustness and alignment performance of DPO under diverse data
conditions by dynamically adjusting the KL regularization coefficient 𝛽 based on intra-batch preference quality and
employing 𝛽-guided data filtering.

Kwon et al. [86] proposed a method that leverages LLMs as proxy reward functions by generating reinforcement
learning signals from natural language prompts, thereby enabling efficient training of agents aligned with user in-
tentions. Eureka [120] achieved automated reward function design without task-specific prompting by incorporating
environment source code as contextual input, combined with reflective reward mechanisms and evolutionary search.
Text2Reward [195] utilized LLMs to automatically generate interpretable and dense reward functions from natural lan-
guage instructions. KTO [34] directly optimized for human utility over generated content rather than the log-likelihood
of preferences, achieving performance comparable to or better than existing methods using only binary feedback.
ORPO [58] integrated Supervised Fine-Tuning (SFT) with dynamic preference optimization, significantly enhancing
instruction following capabilities and generation quality of language models without requiring a reference model. Since
comprehensive surveys on classical RL-based alignment methods have already been published, this subsection provides
only a brief overview of representative approaches during the alignment phase. The latest advances in reward model
design will be discussed in detail in the next subsection.

3.3 Emerging Methods for Reward Model Design
The reward model plays a key role in guiding large language models to generate outputs that align with human
expectations. Recently, a series of studies [23, 49, 114, 174, 234] have utilized testing-phase computational resources
to enhance the performance of reward models. Guo et al. present the Reward Reasoning Model (RRM) [49], which is
trained using a reinforcement learning framework. Through the Chain-of-Thought (CoT) reasoning mechanism, RRM
can adaptively call additional testing phase computational resources for complex queries where reward judgments are
unclear. Zhao et al. [234] introduced a generative process reward model, which performs explicit CoT reasoning and code
verification before making judgments for each reasoning step. Chen et al. [23] framed reward modeling as a reasoning
task. By distilling high-quality reasoning chains and training in two phases—reinforcement learning based on verifiable
rewards—the model achieves state-of-the-art performance on three major reward model benchmarks. Wang et al. [174]
presented the first unified reward model, UNIFIEDREWARD-THINK, based on multimodal CoT reasoning. This model
uses exploration-driven reinforcement fine-tuning to unlock the model’s latent complex reasoning capabilities. Liu et

al. [114] proposed a rule-based online RL trained Pointwise Generative Reward Modeling (GRM) method, which can
evaluate single, paired, and multiple responses, thereby overcoming the limitations of traditional reward models in input
flexibility. At the same time, Yu et al. [217] explored how to improve the generalization of reward models, advocating
that reward models should understand and follow dynamically provided natural language reward principles, similar to
instruction following in large language models. A novel reward model is introduced that is designed and trained by
explicitly following natural language principles. Li et al. [95] found that any LLM trained using standard next-token
prediction inherently contains a powerful general-purpose reward model. AUTORULE [170] builds rule-based rewards
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by extracting rules from preference feedback through interpretation, candidate selection, and merging, then using a
verifier to measure rule satisfaction as an auxiliary reward alongside a learned reward model.

4 Reinforcement Learning Methods in the Reasoning Phase
With the release of GPT-o1 [70] and DeepSeek R1 [48], the focus of research on reinforcement learning for large language
models has gradually shifted towards RLVR technology in 2025. This chapter will introduce the latest advancements
in the algorithms of RLVR technology and will discuss its applications in multimodal reasoning, adaptive thinking,
agents, as well as the integration of RL with other techniques in the fine-tuning phase. Figure 3 illustrates the overall
framework diagram of RLVR technology and the key technical points that can be improved.

4.1 Experimental Findings of RLVR in Improving the Reasoning Ability of LLMs
Reinforcement Learning with Verifiable Rewards has recently demonstrated notable success in enhancing the reasoning
performance of LLMs, particularly in mathematics and programming tasks. However, there is controversy in academic
circles over whether RL truly expands the model’s reasoning ability, or merely amplifies the high-reward outputs
already present in the base model’s distribution, as well as whether continuously increasing computational power
for reinforcement learning can reliably improve reasoning performance. Liu et al. [107] found that when sufficient
training time is provided and applied to new reasoning tasks, reinforcement learning can indeed discover entirely new
solution paths that the base model lacks entirely. Although RLVR improves the sampling efficiency of correct reasoning
paths, Yue et al. [218], using pass@k (the probability of generating at least one correct solution among k samples) as an
evaluation metric, revealed that the current training paradigm has not stimulated truly novel reasoning patterns. Data
shows that RLVR models outperform the base model when k is small (e.g., k=1), but the base model performs better
when k increases. The boundary of reasoning ability in LLMs often narrows as RLVR training progresses. Analysis of
coverage and perplexity indicates that all reasoning paths generated by RLVR exist in the sampling distribution of the
base model, suggesting that its capabilities are inherently derived from and limited by the base model. Prior to this,
several studies [112, 145, 235] have pointed out that the reflective behavior in RLVR models stems from the base model
itself, rather than being acquired through reinforcement learning. To address the above controversies, Wu et al. [190]
pointed out that RLVR is mainly an efficient sampler. Although it can occasionally explore capabilities beyond the
base model, it often fails to solve new problems due to diversity collapse, and it also forgets the problems that the base
model already knows how to solve. Regarding the phenomenon of policy entropy collapse that continuously occurs
in massive reinforcement learning experiments without entropy intervention, Cui et al. [28] established a conversion
equation between entropy value 𝐻 and downstream performance 𝑅:

𝑅 = −𝑎 exp(H) + 𝑏. (10)

This equation indicates that policy performance is achieved at the cost of entropy consumption, and thus is limited by
the depletion of entropy, with a fully predictable theoretical upper limit (𝑅 = −𝑎 + 𝑏 when 𝐻 = 0). This finding suggests
that continuous exploration must be achieved through entropy management to break through the computational power
expansion bottleneck of reinforcement learning.

There is disagreement regarding whether to retain entropy regularization [63, 129, 147]. Through experiments, Cui
et al. [28] showed that although entropy values need to be controlled, it is possible to design objective functions that are
superior to entropy loss. The study found that the covariance exhibited by a small number of tokens is extremely high,
far exceeding the average level. This means that these abnormal tokens play a dominant role in triggering entropy
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collapse. Separating the gradients of high-covariance tokens and preventing their updates from reducing entropy can
suppress entropy collapse. Coincidentally, Wang et al. [168] found that only a few high-entropy tokens guide the model’s
reasoning paths, and training on just 80% of low-entropy tokens significantly reduces performance. High-entropy
tokens (e.g., “however,” “thus,” “because,” “suppose”) handle logical connections, while low-entropy tokens (e.g., affixes,
code snippets, mathematical expression components) are used for sentence construction, with other tokens blending
both roles. Limiting policy gradient updates to branching tokens can improve RLVR.

Li et al. [91] systematically investigated the necessity of explicit thinking processes in rule-based reinforcement
fine-tuning for multimodal large language models. Research has shown that for some tasks and models, removing or
adjusting the thinking process can actually improve performance and efficiency. Ma et al. [118] questioned the necessity
of explicit thinking. This study reveals that using simple prompts to bypass the thinking process yields better results,
and it is found that as the k-value increases, the competitiveness of the non-thinking method in the pass@k metric
continues to strengthen. Samineni et al. [142] critically analyzed the structural assumptions of reinforcement learning in
the post-training of large language models, pointing out that these assumptions reduce RL to filtered iterative supervised
fine-tuning. Through theoretical and empirical evidence, it reveals that the increase in response length is a side effect
of training settings rather than an improvement in reasoning ability. Zhu et al. [248] decomposed learning signals
into two categories: reinforcing correct answers and punishing incorrect ones. Subsequently, it is found that training
using only negative samples without reinforcing correct answers may be more effective. Bogdan et al. [13] proposed
three methods—black box resampling, attention aggregation for receiver heads, and causal suppression—to identify
“thought anchors” pivotal sentences guiding LLM CoT reasoning, validated by the case study and visualization tool.
Wu et al. [193] systematically analyzed that Qwen2.5 [136] conducted RLVR training on the model by constructing
a clean mathematical dataset under different reward settings. The authors found that Qwen can truly improve its
mathematical reasoning ability only when trained on clean data with accurate rewards, emphasizing the importance of
data cleanliness and the quality of reward design in evaluating RL methods. Chen et al. [19] analyzed the limitations of
the traditional “supervised fine-tuning + reinforcement learning” strategy and found that SFT is prone to generating
“pseudo reasoning paths”. This not only fails to effectively enhance complex reasoning abilities but also significantly
impairs the performance of the subsequent RL stage. He et al. [55] presented the Trajectory Policy Gradient Theorem
(TPGT), showing response-level rewards can estimate token-level rewards for LLM reinforcement learning, introducing
the efficient TRePO algorithm, and comparing it to methods like PPO and DPO. Shojaee et al. [151] investigated Large
Reasoning Models through controlled puzzle environments, demonstrating their effectiveness in moderately complex
tasks but revealing significant limitations, including accuracy collapse at high complexity and inefficient reasoning
processes, questioning their generalizable reasoning capabilities. Liu et al. [104] found that stronger reasoning often
increases hallucinations, as longer chains shift attention from image content to language priors, with attention analysis
showing weakened visual focus exacerbates this effect.

4.2 Recent Advances in RL Algorithms for LLMs
This section chronologically introduces the main algorithms of RLVR, focusing on Group Relative Policy Optimization
(GRPO) [147] and its improved algorithms. As RL training for large models on long-chain reasoning tasks such as math-
ematics competitions and code generation has matured, new challenges and corresponding algorithms have emerged.
ByteDance and collaborators released Decoupled Clip and Dynamic Sampling Policy Optimization (DAPO) [216], an
open-source framework for large-scale long-sequence RL training of LLMs. DAPO, built on GRPO, enhances long-CoT
performance with four techniques: Clip-Higher, Dynamic Sampling, Token-Level Policy Gradient Loss, and Overlong
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Reward Shaping. Unlike PPO/GRPO’s symmetric clipping that restricts low probability actions and causes entropy
collapse, DAPO relaxes the upper bound to maintain exploration. It resamples extreme reward prompts to avoid wasted
samples and speed up convergence. By weighting loss by sequence length, it discourages verbose, low-quality outputs
while retaining high-quality, long ones. Finally, it penalizes or truncates overly long outputs, curbing uncontrolled
growth and stabilizing training.

Open-Reasoner-Zero [63] adopted a minimalist training strategy to achieve efficient and scalable improvement in
reasoning ability on foundation models without pre-training fine-tuning, significantly outperforming DeepSeek-R1-Zero
with only one-tenth of the training steps. Zhang et al. [229] generated pseudo-rewards in a self-supervised manner by
leveraging the intrinsic structure of responses from teacher and student models, enabling reward learning without
explicit external evaluation. Kimina-Prover [166] is an RL-trained LLM that enhances reasoning capabilities in Lean
4 theorem proving by constructing structured formal reasoning patterns, achieving performance improvements that
scale with model size without relying on external search algorithms. SRPO [226] enhanced the reasoning capabilities of
LLMs in mathematics and programming tasks through a two-stage reinforcement learning–centric training strategy
combined with a historical resampling mechanism, providing a viable pathway for improving cross-task reasoning
capabilities. Yan et al. [202] introduced off-policy reasoning trajectories from external models and, through a combination
of mixed-policy optimization and regularized importance sampling, enabled the model to learn from both its own
generated data and external demonstrations during training. X-Reasoner [108] through general text post-training (i.e.,
SFT + RL only), has been experimentally proven to have reasoning abilities that can generalize across modalities and
domains. TANGO [219] jointly trained the generator and generative process-level verifier of large language models
through reinforcement learning, aiming to enable the two to promote each other and evolve synergistically without
step-by-step annotations. Zhou et al. [243] extended R1-Zero-style training to tasks without rule-verifiable answers by
generating reasoning trajectories, concatenating them with reference answers, and evaluating the likelihood of the
reference answer. This likelihood serves both as a reward for trajectory optimization and as a weight for supervised
training. REINFORCE++ [61] achieves PPO-like training stability and efficiency without relying on a value network, by
incorporating clipped policy updates, KL divergence penalties, and advantage normalization.

SuperRL [110] detected reward sparsity via an adaptive switching mechanism and, when sparsity is identified,
activates a hybrid executor that combines policy gradients with offline supervision to stabilize learning. KDRL [198]
explored the integration of teacher supervision and RL by constructing a unified objective function that incorporates
GRPO and KD. Graph-R1 [117] proposed a proxy-based GraphRAG framework that enhances the accuracy, efficiency,
and generation quality of LLMs in knowledge-intensive tasks through lightweight knowledge hypergraph construction,
multi-turn interactive retrieval, and end-to-end reinforcement learning optimization. R2-Reasoner [146] employed
a reinforced router to decompose queries and allocate subtasks across heterogeneous LLMs, enabling collaborative
reasoning that balances accuracy, efficiency, and cost. ToTRL [191] improved the reasoning efficiency of language models
in multi-path logical problems by guiding them to transition from linear chain reasoning to tree-structured thinking.
TreeRPO [209] constructs tree-structured reasoning paths and optimizes relative node rewards via tree-based sampling,
providing LLMs with step-level dense feedback without a reward model. TreeRL [60] introduced the entropy-based
tree search strategy EPTree into the reinforcement learning training process of large language models to improve the
diversity of reasoning paths and the quality of process supervision signals.

Magistral [139] proposed a method for enhancing the reasoning capabilities of large language models through
reinforcement learning alone, without distilling reasoning trajectories. MiniMax-M1 [17] introduced a large language
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Fig. 3. Technical architecture of the RLVRmethods. It depicts the overall workflow of the RLVR and expands on the design methods for
the reward model, off-policy assistance, reward filtering, sampling and reasoning strategies, Agent RL, and reward update hierarchy.

model with a mixture-of-experts architecture and a Lightning Attention mechanism, incorporating the CISPO re-
inforcement learning algorithm to improve training stability and efficiency in RL, while supporting million-token
contexts and enabling efficient inference. SPIRAL [103] introduced a multi-agent self-play RL framework with zero-sum
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language games that improves LLM reasoning without supervision or domain data by generating evolving tasks through
adversarial opponents and stabilizing training via role-conditioned advantage estimation. The GSPO algorithm [237]
improved RL training stability and efficiency by replacing token-level importance weights with sequence-level ratios
for reward computation and policy updates, alleviating granularity mismatch.

4.3 Application of RLVR in Multimodal Reasoning
DeepSeek-R1-Zero has successfully demonstrated that reasoning capabilities can emerge in large language models solely
through reinforcement learning. A large body of work has begun to explore how to leverage reinforcement learning to
foster multimodal reasoning abilities. Vision-R1 [68] took the lead in applying reinforcement learning to enhance the
reasoning capabilities of Multimodal Large Language Models (MLLMs), while systematically analyzing the differences
between direct reinforcement learning training and the combined approach of “cold-start initialization + reinforcement
learning training”. Visual-RFT [113] proposed a reinforcement fine-tuning framework for Vision-Language Models
(VLMs), which is applied in fields such as detection, localization, and classification. VLM-R1 [148] observed that many
vision understanding tasks have explicitly annotated ground truths, making them suitable for rule-based reward
mechanisms, and thereby extended R1-style reinforcement learning to vision–language models. R1-onevision [208]
designed a cross-modal reasoning process, which converts images into standardized text representations, thereby
enabling precise language-based reasoning. Deng et al. [29] specifically designed a curriculum reinforcement fine-tuning
algorithm for small-scale Vision-Language Models. Ma et al. [119] explored integrating reasoning capabilities into visual
perception. Zhou et al. [241] successfully reproduced the emergent properties of multimodal reasoning for the first time
on an unsupervised fine-tuned model with only 2 billion parameters. Through experiments, VisuLogic [199] was found
that RL is an effective way to enhance the visual reasoning ability of multimodal large language models. R1-VL [222]
proposed the StepGRPO algorithm, which provides rewards for paths containing necessary intermediate reasoning
steps through soft key step matching technology, and incentivizes reasoning processes that are structured and logically
consistent through reasoning completeness and logicality evaluation strategies, thereby achieving dense rewards for
visual-language reasoning tasks. SophiaVL-R1 [35] incorporated reasoning-process reward signals by computing the
difference in reasoning rewards between correct and incorrect answers, and dynamically assigning confidence weights
to these reasoning rewards, thereby mitigating the impact of unreliable reasoning rewards.

Video-R1 [38] and TinyLLaVA-Video-R1 [227] successively applied reinforcement learning to the video domain.
Video-R1 established a dataset for video reasoning and designed a mechanism where the model receives positive rewards
only when its current reasoning strategy for specific questions demonstrates dependence on temporal information,
thereby strengthening the large model’s temporal modeling ability. TinyLLaVA-Video-R1 [227], on the other hand,
explored how to use reinforcement learning to enhance the video reasoning capabilities of small-scale models. Liao et

al. [100] discussed methods to enhance the visual-spatial reasoning abilities of MLLMs through R1-Zero-style training.
SpaceR [128] extended GRPO through a map imagination mechanism, prompting the model to infer spatial layouts
during the thinking process, thereby enhancing the video spatial reasoning ability of MLLMs. The essence of humans’
and robots’ cognition of the environment lies in perceiving and understanding spatial relationships through first-person
perspective video streams. Therefore, a crucial aspect of embodied intelligence tasks is that the model needs to possess
the ability to perceive and understand spatial relationships from first-person perspective video streams. Zhao et al. [233]
proposed the Embodied-R framework, which realizes collaborative work by combining the perceptual capabilities
of large-scale VLMs with the reasoning capabilities of small-scale Language Models. Ego-R1 [161] explored a new
framework for reasoning over ultra-long (measured in days/weeks) first-person videos. By decomposing complex
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reasoning into modular steps, the RL agent iteratively collaborates by calling specific tools at each step, sequentially
solving sub-problems such as temporal retrieval and multimodal understanding, thereby significantly extending the
time coverage from several hours to a week. VAU-R1 [246] extended RLVR to the field of Video Anomaly Understanding
(VAU), enhances anomaly reasoning capabilities through Reinforcement Fine-Tuning (RFT), and introduces VAUBench,
the first CoT benchmark specifically designed for video anomaly reasoning. VLN-R1 [135] extended RLVR to the field
of Vision-Language Navigation (VLN). CAD-Coder [47] introduced RL into the field of artificial intelligence-assisted
CAD. Chen et al. [24] combined SFT with GRPO and introduce a rule-based reward tailored to scene graph structures,
improving the structural validity, relationship recall, and long-tail category performance of MLLMs in end-to-end
scene graph generation. ARMed [111] explored the application of RLVR techniques in the domain of medical imaging.
3D-R1 [67] enhanced the reasoning and generalization capabilities of 3D VLM by combining cold-start initialization
with high-quality CoT datasets, RL–based training, and a dynamic view selection strategy.

Huang et al. [66] proposed Hint-GRPO to address GRPO’s low data utilization—where models struggle to gain
positive updates from hard samples—and text bias—where models ignore images and rely only on text—by supplying
partial correct reasoning steps as hints and leveraging prediction differences between inputs with and without image
conditions to enforce visual grounding. SRPO [164] explored the problem that MLLMs still lag significantly behind
unimodal text models in complex problems that require explicit self-reflection and correction. Wang et al. [173] extended
the successful pattern of RL in mathematical reasoning and code generation to the field of visual perception by injecting
subtle synthetic visual hallucinations into manually written image description paragraphs and training VLMs to locate
these errors.

T2I-R1 [73] took the lead in introducing RLVR strategies into the field of visual generation, proposing a new
text-to-image generation model based on a two-level CoT reasoning framework and reinforcement learning, which
even surpassed FLUX.1 on benchmarks. DanceGRPO [201] is the first unified framework that adapts GRPO to visual
generation paradigms. It enables the universal deployment of a single reinforcement learning algorithm across diffusion
models and rectified flows generative paradigms; text-to-image, text-to-video, and image-to-video tasks; foundation
models such as Stable Diffusion, HunyuanVideo, FLUX, and SkyReels-I2V; and reward models including image/video
aesthetics, text-image alignment, video motion quality, and binary reward. Xu et al. [200] explored planning through
visual representations completely independent of text, confirming that pure visual planning can serve as a feasible
alternative to language-based reasoning.

Although RL has already been applied to multimodal reasoning, its reasoning process is still mainly limited to text
forms [208]. There is still substantial room for exploration in approaches that deeply integrate multimodal information
and external tools. GPT o3 [127] has demonstrated a strong ability to reason by relying on visual cues, setting off a
new upsurge in visual reasoning research, with researchers scrambling to explore methods to achieve GPT o3-style
visual reasoning. DeepEyes [238] proposed an interleaved multimodal reasoning paradigm, where the model decides
at each step whether to continue reasoning with text or call tools to crop regions of the image as historical context,
and proceeds with reasoning in this way to form an interleaved reasoning sequence. Several methods have been
proposed to address the limitation that models often struggle to effectively anchor their reasoning on visual cues.
For instance, GThinker [220] introduced CueRethinking, which anchors the inference process to visual cues and
resolves inconsistencies through iterative cue reinterpretation. GLM-4.1V-Thinking [59] proposed a unified multimodal
reasoning framework that integrates multi-source pre-training, supervised fine-tuning, and cross-task reinforcement
learning with RLCS and a refined multi-domain reward system to enhance reasoning across diverse tasks.
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4.4 Adaptive Reasoning
RLVR technology has achieved improved performance during testing by consuming more computing resources to
generate longer chain-of-thought sequences. However, the length of its CoT reasoning is uncontrollable, making
it impossible to achieve the expected performance level by allocating computing resources during testing. It often
occurs that excessive testing time is allocated to simple problems or insufficient testing time is allocated to difficult
problems [2, 116, 213]. This has inspired researchers to study adaptive length reasoning methods for large language
models. S1 [125]extended computation through “budget forcing” technique. L1 [2] proposed Length Controlled Policy
Optimization, an RL-based method. After training, the model can generate outputs that meet the required length
constraints given in the prompts, and its performance is better than that of S1. Yi et al. [213] defined Sample Optimal
Length as the length of the shortest correct response among multiple generated results, and uses it as a dynamic reward
signal to guide the model to achieve efficient reasoning. AdaCoT [116], based on the PPOmethod, dynamically controlled
the CoT trigger decision boundary by adjusting the penalty coefficient, enabling the model to judge the necessity of
CoT according to the implicit query complexity. Thinkless [36] is trained under the reinforcement learning paradigm
and uses two control symbols: <short> (concise) and <think> (deliberate). It decomposes the hybrid reasoning learning
objective into a control symbol loss function (managing the selection of reasoning modes) and an answer loss function,
thereby enhancing the hybrid-length reasoning ability. AdaptThink [223] showed that skipping reasoning benefits
simple tasks in performance and efficiency, and by constraining the objective with importance sampling, it balances
“thinking” and “non-thinking” samples during training to enable adaptive mode selection. Jiang et al. [74] designed a
two-stage training framework of first cold start and then reinforcement learning to realize a model that can adaptively
judge whether to start the thinking process according to the context information of user queries. Zhang et al. [225]
systematically quantified the performance upper bounds of Large Reasoning Models (LRMs) in “long thinking” and
“non-thinking” modes. By introducing a precision-aware length reward adjustment mechanism, it adaptively allocates
reasoning resources according to problem difficulty to achieve efficient reasoning. Wang et al. [177] first performed
supervised fine-tuning on the base model to simultaneously acquire long and short chain reasoning abilities. Then, it
adopted a long-short adaptive grouping reward strategy to evaluate the prompt complexity and give corresponding
incentives, and implements a logic-based reasoning mode switching loss function to optimize the initial token selection
of the model, thereby guiding the reasoning type decision. Zhang et al. [221] used the parameter 𝛼 to characterize the
scaled thinking phase. After the 𝛼 moment ends, 𝛼1 deterministically terminates slow thinking through a thinking
termination marker, thereby promoting rapid reasoning and efficient answer generation. This study models the insertion
of reasoning transition markers as a Bernoulli random process to dynamically schedule slow-thinking transitions.

4.5 RLVR for Agent
The interplay between long-horizon decision-making and stochastic environmental feedback introduces unique
challenges in training large language models as interactive agents. Unlike typical single-turn interaction tasks common
in standard LLM applications, interactive agents necessitate extended, multi-turn interactions with their environment.
Despite the advancements of reinforcement learning in static tasks, multi-turn agent training in reinforcement learning
remains understudied, particularly due to issues such as delayed rewards [39, 96, 165]. AGILE [132] integrated large
language models with memory systems, tool utilization, and expert interactions. Here, the LLM serves as the policy
model and is fine-tuned using annotated action data through the Proximal Policy Optimization algorithm. LARM [96]
employed lightweight LLMs (fewer than 5 billion parameters) to directly output executable actions rather than textual
descriptions. Utilizing the PPO algorithm for training and introducing a referee mechanism based on large-scale
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LLMs for providing intermediate rewards, LARM successfully addresses the challenge of long-term reward vanishing,
demonstrated by obtaining enchanted diamond equipment in Minecraft. Search-R1 [76] optimized the reasoning
trajectory of LLMs through multi-round search interactions and adopts retrieval token masking technology to ensure
the stability of reinforcement learning training. ToRL [94] extended reinforcement learning directly from foundational
models (i.e., without additional post-training), enabling large language models to autonomously leverage computational
tools. ReTool [37] enhanced long-chain reasoning by generating synthetic cold-start data to build code-enhanced
reasoning trajectories for fine-tuning, and then applying iterative reinforcement learning with task success rewards to
autonomously optimize tool-use strategies without manual priors. RAGEN [180] investigated four environments and
identified the “Echo Trap” of reward fluctuations and gradient spikes, highlighting that robust reasoning in multi-turn
RL requires diversified initial states, moderate interaction granularity, and higher sampling frequency, while lacking
fine-grained reasoning-aware rewards leads agents to superficial or hallucinatory strategies. OpenThinkImg [155]
optimized task success rates directly through interactive tool feedback, enabling large vision-language models (LVLMs)
to autonomously identify optimal tool-use strategies. Feng et al. [39] addressed the sparse and delayed reward issues
emerging from extended multi-step interactions by computing macro-level relative advantages at the episodic level based
on full trajectory groups, and step-level groupings through an anchored state grouping mechanism. Zhang et al. [228]
adopted a heuristic approach to group games based on features such as rules and difficulty, subsequently training
specialized models for each group. It then merges the parameters from these group-specific models into a unified model,
which is further trained across multiple groups until effective generalization across diverse game scenarios is achieved.
Tool-Star [30] proposed a two-stage training framework integrating six tool categories, employing a hierarchical
reward design through a multi-tool self-assessment RL algorithm. SPA-RL [165] decomposed final rewards into stepwise
contributions aligned with task progress, used a progress evaluator to match cumulative values to completion, and
combined them with baseline signals to yield fine-grained intermediate rewards that mitigate delay and enhance
training. Shop-R1 [230] improved LLMs’ shopping behavior simulation by rewarding action correctness proportional
to difficulty, while noting that limited context windows constrain long-term dynamic reasoning. Memory-R1 [203]
learned to manage external memory and utilize it for long-term reasoning through two dedicated agents: a memory
manager and a response agent. MemAgent [215] employed segmented processing and selective memory mechanisms to
manage extended contextual information. In contrast, RMM [159] and M3-Agent [115] explored strategies for managing
multi-turn long-term memory.

4.6 Reinforcement Learning from Internal Feedback
While methods such as RLHF and RLVR have achieved remarkable results, they require extensive external supervision.
However, a series of studies [190, 218] have found that RLVR does not inspire truly novel reasoning patterns; it merely
improves the sampling efficiency of correct reasoning paths. Since RLVR does not bring new external information to
LLMs but only stimulates the knowledge learned during pre-training, can we find a way to enable LLMs to activate such
pre-trained knowledge without external supervision? Kang et al. [77] hypothesized that higher distributed self-certainty
across samples correlates with response accuracy and thus proposed self-certainty as a metric for evaluating response
quality without external rewards. TTRL [249] utilized prior knowledge from pre-trained models during reinforcement
learning training and employed a majority voting method to address the lack of explicitly labeled data, achieving
performance improvements. Zhao et al. [232] proposed a self-evolving model that autonomously generates and solves
tasks to maximize learning progress without external data, using a code executor to verify both tasks and solutions and
provide unified rewards for open-ended learning. SLOT [64] is a lightweight test-time method that, without altering
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the main model, optimizes an additive vector 𝛿 for each prompt using self-constructed supervision signals to minimize
language modeling loss and thereby improve accuracy and reasoning under complex instructions. Zhao et al. [236] used
the model’s own confidence as the sole reward signal and replaced the external reward in GRPO with a self-certainty
score, achieving fully unsupervised learning. Kang et al. [77] hypothesized that higher aggregated self-certainty across
samples correlates with response accuracy and proposed it as a metric for evaluating quality without external rewards. Li
et al. [92] used the model’s own confidence as the reward signal, eliminating the need for manual annotation, preference
models, or reward function design. Zhang et al. [231] showed that RLIF, using unsupervised reward proxies (entropy
and self-certainty), initially boosts base LLM reasoning to rival RLVR but later degrades below pre-finetuning levels,
yields limited gains for instruction-tuned models, and exposes intrinsic causes of these behaviors. RLSF [162] builds
preference data from models’ self-evaluated answer confidence and fine-tunes them with RL to improve calibration and
reasoning in math and multiple-choice tasks.

5 Datasets and Benchmarks

5.1 Synthetic Data Generation
Zhu et al. [245] proposed a synthetic data framework for abstract visual reasoning that generates structured QA
pairs and reasoning chains via A-SIG for regular patterns and crawls, templates, and manual annotations for irregular
ones, providing diverse, well-defined samples to enhance both perception and reasoning. Goldie et al. [46] designed a
synthetic data pipeline for multi-step reasoning and tool use by leveraging LLM–tool interactions to build stepwise
trajectories with context, actions, and feedback, and applying filtering based on process plausibility and final correctness
to yield high-quality offline data for reinforcement learning. Guo et al. [50] proposed a task-definition-based synthetic
data RL method that generates QA pairs from task definitions, adapts difficulty to model performance, and reinforces
with high-potential samples solvable but not yet mastered, enabling task adaptation without human labels. SwS [99]
targeted reasoning tasks in reinforcement learning with large language models. It identifies problems that the model
consistently fails to solve during training, extracts the underlying concepts involved, and synthesizes targeted follow-up
questions to enhance training.

5.2 Datasets and Benchmarks
This section will introduce the common datasets and test benchmarks in reinforcement learning for large language
models. Table 3 summarizes commonly used datasets and benchmarks spanning alignment/dialogue, code, math,
and general knowledge. HHH [4] is a dialogue-based benchmark designed to evaluate large language models along
three critical dimensions: Helpful, Honest, and Harmless (HHH). It is intended to assess the degree of alignment
between the model and human expectations during interaction. HH-RLHF [6] focused on training preference (or
reward) models as a precursor to RLHF. The test benchmarks for alignment tasks also include IFEval [242], Arena-
Hard [93], AlignBench [109], Creative Writing [130], and so on. APPS [56] evaluated a model’s ability to generate
satisfactory Python code given arbitrary natural language specifications. APPS+ [32] built upon the original APPS
dataset with manual verification and refinement, containing 7,456 examples, each including a programming task
description, reference solution, function signature, unit tests (input/output), and starter code, specifically designed
for code generation. LiveCodeBench [71] extended evaluation beyond code generation to broader code-related skills,
including self-repair, code execution, and output prediction. GSM8K [26] contained 8,500 high-quality, linguistically
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Table 3. Datasets and Benchmarks Overview. This table categorizes and lists common datasets and benchmarks for RL-LLM research,
covering fields such as alignment, code, mathematics, knowledge, logical reasoning, and agentic tasks.

Category Dataset & Benchmark Summary

Alignment / Dialogue HHH [4], HH-RLHF [6], IFEval [242], Arena-Hard [93],
AlignBench [109], Creative Writing [130]

Evaluates alignment in dialogue, focusing on
helpfulness, honesty, and harmlessness.

Code APPS [32], LiveCodeBench [71], SWE-bench [90],
SWE-bench Verified [207], OJBench [179]

Programming tasks involve code generation and
debugging, with automated or real-time evaluation.

Math GSM8K [26], MATH [56], OlympiadBench [54], Minerva
Math [90], OlympiadBench [54], PolyMath [176],

AMC2023, AIME2024/2025, CNMO2024, HMMT2025

Benchmarks for solving mathematical problems,
from elementary to advanced levels, including
competition and Olympiad-level tasks.

General Exams / Knowledge &
STEM

MMLU [57], MMLU-Pro [175], GPQA [140],
SuperGPQA [33], TheoremQA [22], Guru [25],

SimpleQA [184], HLE [133], LiveBench [186], PhyX [149],
BBH [153], BBEH [79], MMReason [211]

General knowledge benchmarks covering various
fields, including STEM and human-level exam
comparisons.

Logic Reasoning AutoLogi [247], ZebraLogic [101] Logic Reasoning Evaluation.

Tools / Multi-turn / Agent 𝜏2-Bench [10], ACEBench [18], MultiChallenge [152] Benchmarks testing multi-turn interaction with
tools, agent-based reasoning.

diverse elementary school math word problems. It also demonstrates that verification strategies significantly improve
model performance on GSM8K, especially when scaling data. MATH [56] introduced 12,500 challenging competition-
style math problems, each accompanied by detailed step-by-step solutions for training models to produce answer
derivations and explanations. MMLU [57] measured multitask accuracy of language models across 57 subjects, including
elementary math, U.S. history, computer science, and law. Achieving high accuracy requires extensive world knowledge
and problem-solving abilities. MMLU-Redux [44] adopted a novel error annotation protocol to identify errors in
the dataset, thereby improving MMLU [57]. MMLU-Pro [175] extended MMLU by incorporating more challenging,
reasoning-focused questions and increasing the number of answer choices from four to ten. It also removed ambiguous
or noisy items present in the original MMLU. GPQA [140] consisted of 448 multiple-choice questions written by
domain experts across biology, physics, and chemistry. Expert accuracy is around 65%, while non-experts (with web
access) achieve 34%, and GPT-4 scores 39%. Designed to be “Google-proof,” the benchmark evaluated deep scientific
reasoning. SuperGPQA [33] assessed postgraduate-level reasoning and domain knowledge across 285 disciplines. It
employed a novel human–LLM co-filtering strategy to iteratively refine questions using model outputs and expert
feedback, eliminating vague or ill-formed items. TheoremQA [22] is the first theorem-driven QA dataset, targeting
a model’s ability to apply formal theorems to solve complex scientific problems. It includes 800 expert-curated high-
quality questions covering 350 theorems from mathematics, physics, electrical engineering, computer science, and
finance. Guru [25] is a reinforcement learning corpus for reasoning, containing 92,000 verifiable examples across six
domains: mathematics, code, science, logic, simulations, and tabular data. BBH [153] included 204 tasks spanning
linguistics, child development, mathematics, commonsense reasoning, biology, physics, social bias, and software
engineering. BBEH [79] replaced every BBH task with a new one testing similar reasoning skills but at significantly
higher difficulty. OlympiadBench [54] is a bilingual, multimodal science benchmark containing 8,476 Olympiad-level
math and physics problems, each accompanied by expert-authored step-by-step reasoning. Minerva Math [90] consisted
of 272 undergraduate-level STEM problems designed to test multi-step scientific reasoning in language models. SWE-
bench [90] included 2,294 software engineering tasks derived from real GitHub issues and corresponding pull requests
across 12 popular Python repositories. SWE-bench Verified [207] contained 50,000 instances collected from 128 GitHub
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Table 4. The Performance of Some Well-Known Reasoning Large Language Models on Test Benchmarks, respectively. The role
of these test benchmarks is to compare the performance of mainstream reasoning models in terms of general tasks, alignment,
mathematics/programming, and logical reasoning benchmarks. The * denotes the 14-language version.

OpenAI-o1 [70] DeepSeek-R1 [48]
Grok-3-Beta
(Think) [194] Gemini2.5-Pro [27] Qwen3-235B-A22B [204]

Architecture – MoE – – MoE
# Activated Params – 37B – – 22B
# Total Params – 671B – – 235B

General
Tasks

MMLU-Redux [44] 92.8 92.9 – 93.7 92.7
MMMLU∗ [57] 88.4 86.4 – 86.9 84.3
GPQA-Diamond [140] 78.0 71.5 80.2 84.0 71.1
LiveBench [186] 75.7 71.6 – 82.4 77.1

Alignment
Tasks

IFEval [242] 92.6 83.3 – 89.5 83.4
Arena-Hard [93] 92.1 92.3 – 96.4 95.6
AlignBench v1.1 [109] 8.86 8.76 – 9.03 8.94
Creative Writing v3 [130] 81.7 85.5 – 86.0 84.6

Math&Coding
Reasoning

MATH-500 [56] 96.4 97.3 98.8 98.0
AIME’24 74.3 79.8 83.9 92.0 85.7
AIME’25 79.2 70.0 77.3 86.7 81.5
PolyMath [176] 38.9 47.1 – 52.2 54.7
LiveCodeBench v5 [71] 63.9 64.3 70.6 70.4 70.7

Logic
Reasoning

ZebraLogic [101] 81.0 78.7 – 87.4 80.3
AutoLogi [247] 79.8 86.1 – 85.4 89.0

repositories. SimpleQA [184] evaluated model performance on answering concise factual questions. LiveBench [186]
addressed concerns of test set contamination and human/model evaluation biases, covering diverse and challenging
tasks across math, programming, reasoning, language, instruction-following, and data analysis. OJBench [179] contained
232 competitive programming problems drawn from national and international contests (e.g., NOI and ICPC), providing
a more rigorous test of reasoning under competitive conditions. AutoLogi [247] and ZebraLogic [101] are dedicated to
evaluating logical reasoning. 𝜏2-Bench [10] and ACEBench [18] are two complementary benchmarks designed to assess
multi-turn tool usage. MultiChallenge [152] evaluated the ability of LLMs to engage in multi-turn dialogue with human
users. MMReason [211] encompassed complex problems spanning multiple domains and difficulty levels—ranging from
pre-university to higher education, and from foundational to competition-level tasks—all of which require multi-step
reasoning to solve. PolyMath [176] is a multilingual benchmark for mathematical reasoning across 18 languages and
four difficulty levels. AMC 2023, AIME 2024/2025, CNMO 2024, and HMMT 2025 are high-difficulty mathematical
competition benchmarks commonly used in the era of advanced reasoning models. MATH500 is a 500-question subset
sampled from the full MATH [56] benchmark. Humanity’s Last Exam (HLE) [133] is a multimodal benchmark situated
at the frontier of human knowledge, aiming to be the final comprehensive academic evaluation of its kind. HLE contains
2,500 questions spanning dozens of disciplines, including mathematics, the humanities, and natural sciences. Developed
in collaboration with global experts, it includes both multiple-choice and short-answer formats suitable for automatic
evaluation. Each question has a clear and verifiable answer that is not easily searchable online. Cutting-edge language
models currently exhibit relatively low accuracy and calibration on this benchmark. PhyX [149] introduced a large-scale
multimodal benchmark covering six physical domains and reasoning types, with tasks built from real visual scenes
requiring image understanding, physical modeling, and symbolic reasoning, revealing comprehension bias and weak
visual grounding in current MLLMs. Table 4 contrasts several well-known reasoning LLMs across tasks and capacities.
Manuscript submitted to ACM



RL Meets LLMs: A Survey of Advancements and Applications Across the LLM Lifecycle 23

6 Open-source Tools and Frameworks
VeRL [150] is a system framework for efficient RLHF training and scheduling that integrates single- and multi-controller
paradigms with a hierarchical interface, introduces a 3D-HybridEngine for parameter re-sharding, and applies automatic
device mapping to optimize flexibility and resource utilization. TRLX [53] supported a wide range of distributed training
paradigms, including data parallelism, model sharding, tensor parallelism, sequence parallelism, and pipeline parallelism.
RL4LMs [138] is designed for optimizing language generators via reinforcement learning. The library implements online
policy optimization algorithms and is compatible with any encoder or encoder–decoder model from the HuggingFace
Transformers library [188], while supporting arbitrary reward functions. Colossal-AI was among the first to open-source
a complete RLHF pipeline, i.e., ColossalChat [214], which included supervised data collection, supervised fine-tuning,
reward model training, and reinforcement learning fine-tuning. DeepSpeed-Chat [212] integrates multiple optimization
techniques for both training and inference into a unified framework. OpenRLHF [62] is built using Ray [97], vLLM,
DeepSpeed [212], and HuggingFace Transformers [188], offering high resource efficiency and support for multiple
training strategies. TRL [163] is designed for post-training foundation models using techniques such as SFT, PPO,
and DPO. Built on top of the Transformers ecosystem [188], it supported various model architectures and modalities
and scales across diverse hardware environments. Wang et al. [180] proposed the RAGEN system, which enhances
large language models’ reasoning and decision-making capabilities in multi-turn interaction environments through the
StarPO reinforcement learning framework. Fu et al. [42] introduced AReaL, a fully asynchronous reinforcement learning
system that completely decouples the generation and training processes. In AReaL, rollout workers continuously
generate new outputs without waiting, while training workers update the model immediately upon collecting a batch
of data. ROLL [171] is a library designed to simplify reinforcement learning for large language models. It addresses the
challenges faced by technologists, product developers, and algorithm researchers in managing multi-model, multi-stage
training workflows. Nemo RL [1] is a scalable and efficient post-training library capable of supporting models ranging
from small to over 100 billion parameters and training environments from a single GPU to thousands. LlamaRL [189] is a
PyTorch-based distributed asynchronous reinforcement learning framework that enables efficient training of large-scale
language models (ranging from 8B to 405B parameters), achieving significant speedups while maintaining strong
performance. Yao et al. [210] proposed Flash-LLM-RL, a package that patches vLLM to support model quantization
with parameter updates. FlashRL [106] introduced Truncated Importance Sampling (TIS) to mitigate the gap between
rollout and training, enabling the use of quantized rollouts without sacrificing downstream performance. DistFlow [182]
introduced a fully distributed reinforcement learning training framework that addresses the common single-controller
bottleneck in large-scale language model post-training. It employed a multi-controller architecture and user-defined
DAG-based task pipelines to achieve decentralized management of both data and computation.

7 Open Discussion

7.1 Research Challenges

While reinforcement learning has undeniably enhanced LLM alignment and reasoning, several fundamental challenges
continue to hinder its full potential.

7.1.1 Scalability and Training Stability. At the system level, large-scale RL on LLMs remains compute-intensive and
sometimes unstable. Fine-tuning billion-parameter, high-action-space models demands vast resources and careful
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hyperparameter control; even with distributed frameworks like VeRL [150], achieving stable large-scale convergence
is non-trivial. Misspecified rewards or poorly managed dynamics can cause policy collapse or divergence [137, 216].
Tooling is fragmented—libraries vary in interfaces and scope, complicating pipeline integration [53, 212]. More efficient
algorithms and robust, unified open-source frameworks are still needed to make RL both accessible and reliable at scale.

7.1.2 Reward Design and Credit Assignment. From a methodological perspective, challenges center on reward design,
credit assignment, and exploration. Outcome-only rewards bias learning toward obvious, high-probability reasoning
and overlook complex or unconventional solutions [190, 218]. Richer signals, such as step-level dense feedback [222],
and entropy-based or diversity-promoting rewards [28, 168], show promise but remain immature; balancing exploration
with efficient convergence is unresolved. Long-horizon credit assignment is especially difficult when rewards arrive
only after lengthy reasoning [96], motivating new reward schemes and algorithms.

7.1.3 Theoretical Understanding and Reliability. At a theoretical and analytical level, we lack a clear account of
generalization and stability in RL-trained LLMs. It remains open whether RL genuinely yields new reasoning abilities
or simply amplifies pre-trained patterns [190, 218, 235]. Misconfigured optimization can degrade calibration or core
knowledge [83, 84]. We need criteria for when RL helps versus hurts, and techniques, e.g., reward model regularization
or conservative updates to curb instability. Deeper theory and lifecycle-wide interpretability studies are limited but
essential for safer, more effective RL.

7.1.4 Application-Level Challenges of Agentic LLMs. At the application level, integrating LLMs with agentic and
tool use via RL presents both exciting opportunities and unresolved difficulties. Recent work has started to treat
LLMs as autonomous agents [37, 39, 132, 165] that can plan, act, and interact with external tools or environments to
accomplish complex goals. Reinforcement learning is a natural fit for training such agentic LLMs because it provides a
feedback loop for trial-and-error learning in interactive scenarios. However, scaling this idea up surfaces challenges in
efficiency, safety, and controllability. Training an LLM agent through environment interactions (e.g., simulated tool
APIs [94], web browsing[30], or games [96]) is extremely resource-intensive, as it requires running the expensive
model many times to explore different action sequences. Ensuring the safety of agentic behavior is even more critical:
an RL-driven agent might discover strategies that technically maximize reward while violating user intent or ethical
normswang [41, 121, 122, 168]. Unlike constrained single-turn text generation, an autonomous LLM agent could take a
sequence of harmful or undesirable actions if its reward function is misspecified [180]. Therefore, developing safe RL
techniques for LLM-based agents is an urgent area of research. Additionally, current approaches often lack a memory
or planning mechanism to handle very long interaction sequences, making it hard for agents to perform tasks requiring
long-term planning or to recover from mistakes [115, 159, 215]. Integrating external memory combined with RL is a
promising direction to address long-horizon agency, but it remains largely unexplored. Correspondingly, significant
challenges remain with respect to datasets and evaluation benchmarks. Current studies often rely on bespoke datasets
or task-specific benchmarks, making it difficult to systematically compare RL fine-tuning methods and to separate
genuine improvements from task-specific gains. Although initial attempts such as Polymath [176], Humanity’s Last
Exam [133] provide more rigorous tests for advanced reasoning, the broader field still lacks standardized, community-
wide benchmarks and unified metrics. Developing such resources remains essential for establishing a solid theoretical
and empirical foundation for RL-augmented LLMs.
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7.2 Future Trends

7.2.1 Evolving Learning Paradigms. Looking ahead, we anticipate several key research trends to shape the future
of RL-enhanced LLMs. First, there will be a push toward richer and more nuanced reward modeling. Rather than
relying solely on outcome-based reward signals, future work is expected to incorporate process-level supervision
and intermediate rewards that evaluate the quality of reasoning steps, justification logic, or adherence to constraints
throughout the generation process [209, 222]. Such process-oriented rewards would help address the long-horizon
credit assignment problem and encourage the model to develop more transparent and verifiable reasoning paths. Second,
we foresee tighter integration of RL with structured reasoning paradigms and knowledge representations [117]. By
embedding logical or graph-structured inductive biases into the RL process, models may learn reasoning strategies
that transfer more robustly to new tasks, as opposed to the relatively unstructured trial-and-error approach currently
prevalent. For example, an LLM might use RL to learn how to traverse and update a knowledge graph or to plan
sequences of tool calls, thereby gaining a form of systematic reasoning that purely neural approaches struggle with.

7.2.2 Expanding Application Frontiers. Finally, the scope of RL applications for LLMs will continue to broaden, driving
further innovations. We expect significant growth in multimodal reasoning tasks where LLMs augmented with vision,
audio, or other modalities use RL to coordinate between modalities and achieve complex goals [45, 68] as well as in
specialized domains like scientific research assistants, formal theorem proving, or decision-support systems. Each
of these new domains will bring its own challenges, likely necessitating customized reward functions and safety
considerations. The introduction of more comprehensive benchmarks and competitions targeting these scenarios will
spur methodological advances by highlighting the limitations of current techniques. Meanwhile, given that agentic
systems are inherently well-suited to the RL training paradigm and hold broad application prospects, RL-enhanced
Agentic LLMs are undoubtedly an emerging and future technological trend.

7.2.3 Toward a Virtuous Research Cycle. In combination, these trends indicate a shift beyond today’s relatively con-
servative fine-tuning toward a paradigm of using RL to train more adaptive, robust, and safe LLMs. The long-term
vision is that reinforcement learning, underpinned by strong theoretical insights and practical tools, will enable LLMs
to not only align with human values but also continuously improve their reasoning through experience, ultimately
inching closer to systems that can learn how to reason in a human-like, self-correcting manner. Each challenge outlined
above also represents an opportunity: by overcoming issues of stability, reward design, theoretical understanding, and
evaluation, the field can unlock the next wave of progress in large-scale intelligent systems. Each emerging solution,
in turn, feeds into a virtuous cycle—better tools and benchmarks lead to more rigorous research, which yields more
capable and aligned models, which then require new evaluation standards—pushing the frontier of what RL-enhanced
LLMs can achieve. When considered together, these trends signify a shift toward more comprehensive, structured, and
diversified RL training for LLMs. Each challenge represents both a limitation and an opportunity: resolving scalability,
reward design, theory gaps, application challenges of agentic LLMs, and evaluation will unlock new reasoning frontiers.
Crucially, solutions reinforce each other better tools and benchmarks lead to stronger models, which in turn necessitate
improved evaluation. This self-reinforcing cycle will drive the evolution of more aligned, generalizable, and safe
RL-enhanced LLMs.

8 Conclusion
This survey presents a comprehensive review of reinforcement learning for large language models, organized around
the full training lifecycle from pre-training to alignment and reasoning. Particular emphasis is given to RLVR technology,
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which represents a promising direction for incorporating objective and reliable optimization signals. In addition, the
survey consolidates datasets, benchmarks, and open-source frameworks, providing a structured reference for both
evaluation and practical implementation. By integrating these perspectives, the survey delivers a lifecycle-based
synthesis that highlights both methodological advances and supporting resources, serving as a state-of-the-art reference
for future research in RL-enhanced LLMs.
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