Proceedings of the Thirty-Fourth International Joint Conference on Artificial Intelligence (IJCAI-25)
Survey Track

Reward Models in Deep Reinforcement Learning: A Survey

Rui Yu, Shenghua Wan, Yucen Wang, Chen-Xiao Gao,
Le Gan, Zongzhang Zhang, De-Chuan Zhan

National Key Laboratory for Novel Software Technology, Nanjing University, China
School of Artificial Intelligence, Nanjing University, China

{yur,wansh,wangyc,gaocx } @lamda.nju.edu.cn, {ganle,zzzhang,zhandc} @nju.edu.cn

Abstract

In reinforcement learning (RL), agents continually
interact with the environment and use the feedback
to refine their behavior. To guide policy optimiza-
tion, reward models are introduced as proxies of
the desired objectives, such that when the agent
maximizes the accumulated reward, it also fulfills
the task designer’s intentions. Recently, signifi-
cant attention from both academic and industrial
researchers has focused on developing reward mod-
els that not only align closely with the true objec-
tives but also facilitate policy optimization. In this
survey, we provide a comprehensive review of re-
ward modeling techniques within the deep RL lit-
erature. We begin by outlining the background
and preliminaries in reward modeling. Next, we
present an overview of recent reward modeling ap-
proaches, categorizing them based on the source,
the mechanism, and the learning paradigm. Build-
ing on this understanding, we discuss various ap-
plications of these reward modeling techniques and
review methods for evaluating reward models. Fi-
nally, we conclude by highlighting promising re-
search directions in reward modeling. Altogether,
this survey includes both established and emerging
methods, filling the vacancy of a systematic review
of reward models in current literature.

1 Introduction

In recent years, deep reinforcement learning (DRL), a ma-
chine learning paradigm that combines RL with deep learn-
ing, has demonstrated its immense potential in applications
across various domains. For example, AlphaGo [Silver et
al., 2016] showcased RL’s capability of complex decision-
making in game scenarios; InstructGPT [Ouyang et al.,
2022] marked the irreplaceable role of RL in aligning lan-
guage models with human intents; agents trained via large-
scale RL, such as OpenAl-ol and DeepSeek-R1 [Guo et al.,
20251, demonstrated impressive reasoning intelligence that is
comparable or even exceeds human capability. Unlike super-
vised learning (SL) where the agent is required to imitate and
replicate the behavior recorded in the dataset, RL sets itself
apart by enabling the agent to explore, adapt, and optimize its

behavior based on the outcome of its actions, thereby achiev-
ing unprecedented levels of autonomy and capability.

A key component of reinforcement learning is the reward,
which essentially defines the goal of interest in the task and
guides the agents to optimize their behavior toward that in-
tent [Sutton er al., 1998]. Just as dopamine motivates and
reinforces adaptive actions in biological systems, rewards in
RL encourage exploration of the environment and guide in-
telligent agents towards desired behaviors [Glimcher, 2011].
However, while rewards are typically predefined in research
environments [Towers et al., 2024], they are often absent or
difficult to specify in many real-world applications. In light of
this, a significant portion of modern RL research focuses on
how to extract effective rewards from various types of feed-
back, after which standard RL algorithms can be applied to
optimize the policies of agents.

Despite the crucial role of reward modeling in RL, exist-
ing surveys [Arora and Doshi, 2021; Kaufmann et al., 2023]
are often embedded within specific subdomains such as in-
verse reinforcement learning (IRL) and reinforcement learn-
ing from human feedback (RLHF), with a limited focus on
reward modeling as a standalone topic. To bridge this gap,
we provide a systematic review of reward models, cover-
ing their foundations, key methodologies, and applications
across diverse RL settings. We introduce a new categoriza-
tion framework that addresses three fundamental questions:
(1) The source: Where does the reward come from? (2)
The mechanism: What drives the agent’s learning? (3) The
learning paradigm: How to learn the reward model from var-
ious types of feedback? Furthermore, we highlight recent ad-
vancements in reward models based on foundation models,
such as large language models (LLMs) and vision-language
models (VLMs), which have received relatively little atten-
tion in previous surveys. The framework of reward modeling
we establish in this survey is illustrated in Figure 1. Specifi-
cally, this survey is organized as follows:

1. Background of reward modeling (Section 2). We first
provide the necessary background on RL and reward
models;

2. Categorization of reward models. We propose a clas-
sification framework for reward models, distinguishing
them by three key factors: the source (Section 3), the
mechanism that drives learning (Section 4), and the
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Figure 1: A framework for reward modeling in RL, categorizing reward models by their sources, feedback types, and mechanisms to provide
a structured understanding of how rewards are derived and utilized in RL systems.

learning paradigm used to derive rewards (Section 5).
We also list recent publications about reward modeling
and categorize them based on our hierarchy in Table 1.

3. Applications and evaluation methods of reward mod-
els (Section 6 and Section 7). We provide a discussion
on the applications of reward models in practical scenar-
i0s, together with evaluation methods for these models.

4. Prosperous directions and discussions (Section 8).
We summarize this survey by presenting potential future
directions in this topic.

2 Background

RL is typically formulated as a Markov Decision Process
(MDP) (S, A, T, R,~), where S and .A denote the state space
and the action space, respectively. The transition function
T'(:|s, a) defines the distribution over the next states after tak-
ing action a at state s. The reward model R(s,a) specifies
the instantaneous reward that the agent will receive after tak-
ing action a at state s, and -y is the discount factor that bal-
ances the importance of future rewards. An RL agent aims
to find the policy 7(a|s) maximizing the following expected
discounted cumulative reward (a.k.a. return):

ZVtR(St,at)] : )]
=0

where the expectation is taken over the distribution of states
and actions that the agent will encounter following 7 and T'.

The fundamental objective of learning is to refine an
agent’s behavior to accomplish predefined goals or tasks.
While supervised learning (SL) offers a principled approach
by training agents on human-annotated datasets to mimic hu-
man behavior, this method is limited by the quantity and qual-
ity of available human demonstrations. Consequently, agents
trained solely by SL may make irrational decisions when
human behavior is missing or sub-optimal. Reinforcement
learning instead offers another principled way that permits
the agent to explore the environment autonomously and adapt
its behavior based on the rewards it receives. Such a trial-
and-error approach exempts the agent from the constraints of
datasets and opens the possibility of achieving or even sur-
passing human-level performance.

Although S, A, and the transition model 7" are inherently
defined by the environment, the reward model R must be
carefully crafted by the task designer. This careful design

j(ﬂ-) = Eﬂ',T

is crucial to ensure that the specified rewards truly reflect the
underlying objectives. In many applications, only descriptive
guidelines or standards of the intended goals are available,
and therefore we need to convert them into statistical reward
models. This process is termed as reward modeling through-
out this survey.

3 Sources of Rewards

In this section, we explore different sources of reward signals
in RL. We categorize reward sources into two main types:
human-provided rewards, which leverage human expertise
and supervision, and Al-generated rewards, which rely on
foundation models typically trained by self-supervised learn-
ing on internet-scale datasets.

3.1 Human-Provided Rewards

Manual Reward Engineering

Manual reward engineering refers to the process where
researchers meticulously design reward functions to steer
agents toward optimal policies. Take the walker task in Gym-
MuJoCo [Towers er al., 2024] as an example: its reward
is manually designed as a combination of survival, forward
movement, and control cost penalties. However, reward en-
gineering requires human experts to translate ambiguous task
objectives into precise statistical models. Such an undertak-
ing can be both resource-intensive and perilous: if the reward
function is inadequately crafted, the agent may suffer from
reward hacking, leading to unpredictable behaviors [Kauf-
mann et al., 2023].

Human-in-the-Loop Reward Learning

Instead of directly crafting the reward models, human-in-the-
loop reward learning derives rewards from indirect human su-
pervision, including demonstrations [Abbeel and Ng, 2004],
goals [Liu et al., 2022], and preferences [Kaufmann et al.,
2023]. Compared to manual reward engineering, asking hu-
man experts to provide demonstrations or feedback of such
kind is much more straightforward. However, the reward
learning process needs to be specifically designed to accom-
modate different kinds of supervision and ensure alignment
with the intended task objectives.

3.2 Al-Generated Rewards

Foundation models, such as large language models (LLMs)
and vision-language models (VLMs) pre-trained on internet-
scale human-generated data, have demonstrated a remarkable
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ability to interpret human intent and autonomously define
reward models for RL. For instance, LLMs have been em-
ployed to design reward functions [Xie et al., 2023] and gen-
erate feedback for reward learning [Klissarov et al., 2023;
Bai et al., 2022; Lee et al., 2024]. VLMs, in particular, are
highly effective in specifying rewards and tasks within visu-
ally complex environments. Some studies [Fan er al., 2022;
Sontakke et al., 2023] compute semantic similarity between
agent states and task descriptions, enabling dense reward sig-
nals from visual observations. Others [Wang et al., 2024] uti-
lize VLMs to analyze visual inputs and generate preference-
based feedback for reward model training. While certain ap-
proaches [Baumli er al., 2023] leverage off-the-shelf foun-
dation models for zero-shot reward specification, others [Fan
et al., 2022; Sontakke et al., 2023] fine-tune these models on
domain-specific datasets to improve reward design.

4 Reward Mechanisms

In this section, we focus on two different reward mechanisms
that drive RL agent’s learning.

4.1 Extrinsic Reward

Rewards are defined by incentives that drive the agent. The
term extrinsic reward corresponds to incentives that arise
from external sources and directly relate to the desired task
objective, e.g., instructions or goals set by supervisors or em-
ployers. Defining extrinsic rewards requires the task designer
to translate abstract goals into concrete, quantifiable rewards
that can be incorporated into a standard RL pipeline. The
approach to accomplish this is detailed in Section 5.

4.2 Intrinsic Motivation

In contrast to extrinsic rewards, intrinsic motivation (IM) cap-
tures an agent’s innate motivation to explore and refine its be-
havior in the environment [Ryan and Deci, 2000]. [1950]
observed that even without an extrinsic stimulus, monkeys
have a spontaneous desire and curiosity to solve complex puz-
zles. Later [Barto et al., 2004] introduced IM into the reward
mechanism, leading to the application of intrinsic reward.
Unlike extrinsic rewards, intrinsic rewards are often disentan-
gled from specific task objectives; rather, they encapsulate the
encouragement for beneficial behaviors for problem-solving,
such as exploration.

To coordinate the intrinsic reward and extrinsic reward, one
common approach is to compute the agent’s reward r as a
weighted sum of the intrinsic reward ri,, and the extrinsic re-
ward 7oy

7= Arinc + (1 — X)rex, 2

where 0 < )\ < 1 is a coefficient that balances the intrinsic
reward 7, and extrinsic reward 7ey;.

Next, we introduce three widely used types of intrinsic mo-
tivation in reinforcement learning.

Exploration

IM has long been used to encourage exploration. By lever-
aging concepts such as surprise [Pathak er al., 20171, epis-
temic uncertainty [Houthooft et al., 2016], and disagreement

[Pathak et al., 2019; Sekar et al., 2020], many methods quan-
tify the strangeness of states as the prediction errors of state
transition, and thus use the errors as intrinsic rewards to en-
courage the agent to explore unseen areas of the environment.
The strangeness of states can also be quantified using the dis-
tillation error between randomly initialized networks [Burda
et al., 2018], which can be more flexible to implement.

Other works design intrinsic rewards for exploration
through the lens of data diversity. Among them, count-based
methods, such as the well-known upper confidence bound
(UCB) [Lai and Robbins, 1985], maintain the state visita-
tion counts and assign higher intrinsic rewards for less-visited
states. Later, static hashing [Tang et al., 2017] and density
estimation [Bellemare et al., 2016; Ostrovski et al., 2017]
are incorporated to extend count-based exploration to prob-
lems with larger or even continuous state spaces. On the other
hand, [2021] and [2020] promote diversity by estimating the
data entropy and using the entropy as the intrinsic rewards. In
this way, they can encourage the agent to explore novel and
diverse states.

Empowerment

Empowerment, an information-theoretic intrinsic motivation
(IM) concept, motivates an agent to maximize its influence
on the environment by seeking states where it possesses the
greatest control over future outcomes [Klyubin et al., 2005].
An intrinsic reward signal can then be formulated to guide the
agent’s exploration towards states that offer greater control
and a wider diversity of achievable consequences. Many pre-
vious works leverage empowerment for skill discovery [Ey-
senbach er al., 2018; Mazzaglia et al., 2022]. These works
aim to find a skill-conditioned policy 7(als, z) that maxi-
mizes the mutual information between the resulting trajectory
and the latent variable z. The intrinsic reward is designed
based on the decomposition of this mutual information. The
agent is then encouraged to recover the latent z from the tra-
jectory, implying that different z should produce distinctly
different trajectories, thereby defining z as the skill. By pro-
viding an intrinsic reward based on the agent’s potential to
influence the environment, skill learning through empower-
ment enables more generalizable agent behaviors and facili-
tates rapid adaptation to new tasks.

Knowledge-Driven IM

Many approaches leverage high-level knowledge and struc-
tured reasoning to generate intrinsic rewards, bridging the gap
between abstract understanding and low-level sensorimotor
interactions. Some methods derive preferences from struc-
tured event descriptions, comparing pairs of observations to
infer meaningful intrinsic signals [Klissarov er al., 2023].
[2023] adopted a reward-shaping technique by treating valu-
able propositional logic knowledge as intrinsic rewards for
the RL procedure. [2023] generates goal candidates based on
an agent’s current context and provides rewards for achiev-
ing those inferred objectives. In recent work [Klissarov er
al., 2023], large-scale models such as LLMs and VLMs have
been employed to facilitate this process due to their broad
knowledge and reasoning capabilities.
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Source Mechanism Feedback Method
[Pathak et al., 2017; Houthooft et al., 2016; Pathak et al., 2019; Sekar et
human ntrinsic ) al., 2020; Burda et al., 2018; Bellemare et al., 2016; Badia et al., 2020;
Liu and Abbeel, 2021; Eysenbach et al., 2018; Mazzaglia et al., 2022; Wan
etal., 2024]
Al intrinsic - [Klissarov et al., 2023; Xu et al., 2023; Du et al., 2023]
human extrinsic demonstration [Abbeel and Ng, 2004; Ziebart et al., 2008; Finn et al., 2016a; Finn et al.,
2016b; Fu et al., 2017; Jeon et al., 2020]
[Liu et al., 2022; Nachum et al., 2018; Mazzaglia et al., 2024; Hartikainen
human extrinsic goal et al., 2019; Mendonca et al., 2021; Park et al., 2023; Myers et al., 2024;
Wang et al., 2025]
Al extrinsic goal [Sontakke et al., 2023; Fan et al., 2022; Rocamonde et al., 2023]
[Christiano et al., 2017; Kim et al., 2023; Verma and Metcalf, 2024; Knox
human extrinsic preference et al., 2022; Touvron et al., 2023; Liu et al., 2024a; Ouyang et al., 2022;
Kopf et al., 2023; Rafailov et al., 2023; Song et al., 2024; Liu et al., 2024b]
Al extrinsic preference [Bai er al., 2022; Lee et al., 2024; Wang et al., 2024]

Table 1: Summary of the algorithms mentioned in Section 3, Section 4, and Section 5.

S Learning Paradigms

In this section, we focus on the paradigms of learning the
reward model Ry from different kinds of human feedback.
Specifically, existing literature that involves reward learning
can be broadly categorized into three paradigms, namely:

* Learning from demonstrations, which extracts reward
models based on demonstrations provided by human ex-
perts. This is related to inverse RL (IRL) [Arora and
Doshi, 2021].

Learning from goals, which derives reward models
from specified goal states. This is related to goal-
conditional RL (GCRL) [Liu et al., 2022].

Learning from preferences, which extracts reward
models from human preferences among two or more tra-
jectory segments. This is related to preference-based RL
(PbRL) and reinforcement learning from human feed-
back (RLHF) [Kaufmann et al., 2023].

L]

In each subsection, we will provide a brief overview of the
established methods in each setting.

5.1 Learning from Demonstrations

Maximum-Entropy Inverse Reinforcement Learning

Previous approaches to IRL iteratively optimize the reward
model to maximize the performance margin between demon-
strations and any other policy, such that the demonstrations
appear optimal under the learned reward model [Abbeel and
Ng, 2004]. However, the IRL problem is inherently ill-posed,
because multiple distinct rewards may explain the same ex-
pert behavior. A common strategy for resolving this ambigu-
ity is to incorporate additional regularization into the learn-
ing objective. As an example, the maximum-entropy IRL
(MaxEnt-IRL) framework [Ziebart et al., 2008] introduces
entropy regularization such that the expert demonstrations are

drawn from the Boltzmann distribution:
exp(Rg(T
po(r) = ZPLTT)

Zy
where 7 = (s1,a1,...,5|7|,a|;|) denotes the demonstrated

; 3)

trajectory, and Ry(7) = Z‘;'l Ry (s, at) is the cumulative
reward along 7. The partition function Zy normalizes the dis-
tribution, and it can be computed via dynamic programming
in small, discrete domains [Ziebart et al., 2008] or approxi-
mated by importance sampling in continuous settings [Finn
et al., 2016b]. By parameterizing the reward model Ry as
linear models or neural networks, we can perform maximum
likelihood training based on observed demonstrations and ob-
tain the reward models that explain the demonstrations.

Adversarial Reward Learning

[2016a] demonstrated that the MaxEnt-IRL problem can
be reformulated as a generative adversarial network (GAN)
problem by employing a specifically structured discrimina-
tor. Let the generator of the trajectories and the reward model
be g, (7) and Ry(7) respectively, the discriminator is param-
eterized as:

7 exp(Ro(7))
7 exp(Ro(7)) + gy (1)’
where Z represents the partition function and can be esti-

mated via importance sampling. The generator and the dis-
criminator are trained via standard GAN losses:

L(0) = Erp, [-1og Dy(7)] + Erng [~ log(l = Dy(7))],

L) = Brmg, {log “;ﬁj@}

= Erng, [=Ro(7)] — H(gy) +log Z,

Dy(1) = )

)
where D, denotes the expert demonstrations and H is the
entropy. By optimizing (5), we can effectively optimize

10810



Proceedings of the Thirty-Fourth International Joint Conference on Artificial Intelligence (IJCAI-25)
Survey Track

the reward model Ry. When the optimization converges,
it follows from the maximum-entropy theory that ¢*(7) o<
exp(R* (7)), which exactly recovers the MaxEnt-IRL prob-
lem in (3). However, conducting optimization over the tra-
jectories incurs high variance, and therefore the adversarial
inverse RL (AIRL) framework [Fu et al., 2017] further de-
composes the problem and operates on a state-action level:

L(0) = Ep, [~log Dy(s,a)] + E,, [—log(1 — Da(s, a))(]6,)

oxp fo(s.a) 55 Once training is com-

) exp(fo(s,a))+py(als)”
plete, fp is shown to recover the optimal advantage func-

tion A*, from which reward models may subsequently be ex-
tracted. Building on this foundation, the AIRL framework has
been further extended — for instance, to encompass a broader
class of regularizations [Jeon er al., 2020] .

where Dy(s,a) =

5.2 Learning from Goals

When our intended goals can be explicitly described or spec-
ified as a state ¢ € S, the reward model can be conveniently
defined based on whether the goal is achieved [Liu et al.,
2022]:

R(s,g) = 1(s accomplishes g), ™

where 1 is the indicator function. However, this binary re-
ward structure is extremely sparse and inefficient for policy
optimization, because the agent only receives a reward upon
reaching the goal state, without intermediate supervision. To
address this sparsity, an alternative solution is to reshape the
reward as the distance between the current and the desired
goal:

R(s, g) = —d(6(s),¥(9)), ®

where ¢ and 1/ are mapping functions that transform the state
s and the goal g to the same latent space, and d(-, -) is a spe-
cific distance metric on that space. This distance-based re-
ward provides a more nuanced measurement of the agent’s
progress toward the specified goal. In the below, we will in-
troduce two commonly adopted distance metrics: spatial dis-
tance and temporal distance.

Spatial Distance

Spatial distance directly quantifies the similarity between
states from the environment. Common approaches utilize
measures such as the L2 distance [Nachum et al., 2018],
and cosine similarity [Mazzaglia et al., 2024] to assess the
proximity between states. These metrics may be computed
either in the raw state space [Nachum et al., 2018], or within
a learned latent space [Mazzaglia et al., 2024] which better
captures and exploits the problem structure.

Temporal Distance

Other works focus on the notion of temporal distance, which
conceptually assigns higher rewards to states that are tempo-
rally closer to the goal state. For instance, approaches like
[Hartikainen et al., 2019] and [2025] train a distance met-
ric function dy, such that dp(s, g) approximates the number
of time steps required for the agent to reach g from s. Us-
ing R = —dy as the reward model, the agent will be guided

toward states that are in the proximity of the goal. More-
over, [Park et al., 2023] frames temporal distance learning as
a constrained optimization problem, maintaining a distance
threshold between adjacent states while dispersing others.
Recently, [Myers et al., 2024] defines a temporal distance
metric based on successor features and temporal contrastive
learning, which is shown to satisfy the quasi-metric property.
Temporal distance offers a more grounded reward signal by
effectively reflecting the agent’s progress toward the goal and
capturing deeper task semantics beyond visual details.

Semantic Similarity

Semantic similarity-based rewards measure how closely the
agent’s current state aligns with a given goal in a shared rep-
resentation space. RoboCLIP [Sontakke er al., 2023] com-
putes the reward as the dot product between the text embed-
ding of a language-specified goal and the video embedding
of the agent’s observed trajectory. MineCLIP [Fan et al.,

NLT, O), where
Pg is the probability of the observation video matching the
goal description against negatives, and +— serves as a base-
line to filter out uncertain estimates. These embeddings can
be obtained from VLMs, which map multimodal inputs into

a common space, allowing the agent to learn from high-level
instructions or demonstrations.

2022] computes rewards as R = max (PG —

5.3 Learning from Preferences

In many applications, obtaining human evaluations is com-
paratively cost-effective compared to collecting demonstra-
tions or identifying the goal states. Consider training lan-
guage models to follow instructions as an example, it is
both tedious and time-consuming to require human annota-
tors to generate template responses for every request. On the
contrary, comparing agent-generated responses using metrics
such as helpfulness, harmlessness, and truthfulness is con-
siderably more straightforward. In this section, we there-
fore investigate methods for deriving rewards from human-
annotated preferences among candidate options.

In this framework, annotators are asked to label their pref-
erences y between a pair of trajectories (79, 71), where 7 =
(81,a1,...,87],0)-|). Alabel y = 0 means 7Y is preferred
over 7! (denoted as 7 = 7!), and y = 1 implies the oppo-
site. To build the connection between observed preferences
and reward models, we need preference models. A widely
used example is Bradley-Terry (BT) models [Bradley and
Terry, 19521, which posit that the probability of preference
can be described by a Boltzmann distribution applied to the
cumulative reward:

exp(2(3?7a?)670 RQ(S?a a?))
Zje{o,1} eXP(Z(sﬂ eri R9(stva{))
)
To optimize the reward model Ry, we can maximize the like-
lihood of the observed preferences:

L) = -

>, (-

(9,71 y)eD

Pyr(r? - 7150) =

Y) logP(TO - 71;9) + ylogP(T1 - 70;9)7

(10)
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where P is defined according to the preference model in
(9). After training, we can label the reward of each transi-
tion pair and subsequently employ any RL algorithm to opti-
mize the policies [Christiano et al., 2017]. Alternatively, we
can also directly train the policy via (10) by reparameterizing
the reward model through the policy in certain circumstances
[Rafailov er al., 2023].

Preference Models

Despite its popularity in PbRL literature, BT models may not
align with reality [Kim er al., 2023]. Consequently, sev-
eral studies have proposed alternative preference models that
more closely reflect the mechanisms underlying human pref-
erences. Preference Transformer [Kim et al., 2023] intro-
duces importance weights over state-action pairs to account
for the dependence on certain critical states in the trajectory:

eXp(Z(s?,a?)GTO ’lU?Rg(Sg, ag))

Zj eXP(Z(Sg,a{)eTj wi Ry(s{,a1))
4 (11)
where j € {0, 1} and the weights wy are the average attention

weights of the pair (s], a]) € 77 calculated by a bi-directional

attention layer. Similarly, [2024] replaced weights in (11)
with attention weights from a transformer-based transition
model, thereby incorporating state importance priors from the
perspective of transition models. Besides, the regret-based
models [Knox et al., 2022] propose to model human prefer-
ences by the sum of optimal advantages along the trajectory,
rather than the rewards:

Ppr(r° = 710) =

exp(—Regret(7?))
exp(—Regret(70)) + exp(—Regret(71))’
||

Regret(r) = ) _[QF(s0, ) — Vii(s0)],

t=1

PReg(TO - 7'1) =

12)
with V3 and Q% being the optimal state value function and Q-
value function for the reward model R, respectively. [2022]
demonstrated that this approach may better predict real hu-
man preference and the learned reward model may achieve
superior performance in practice.

Extension to Ordinal Feedback

Ordinal feedback generalizes binary feedback by requiring
annotators to additionally specify the strengths of their pref-
erences (e.g., slightly better or significantly better). To inte-
grate this more nuanced information, existing studies modify
BT models by incorporating soft margins [Touvron et al.,
2023] or soft labels y; € [0,1] [Liu et al., 2024al, where the
margin or the label reflects the strength of the preference.

Beyond Pairwise Comparisons

Human feedback can also be provided in the form of rankings
among multiple candidates [Ouyang er al., 2022; Kopf et
al., 2023]. Although such listwise comparisons put a greater
burden on annotators, they also carry richer information than
pairwise comparisons. To accommodate rankings, Plackett-
Luce (PL) models [Plackett, 1975] generalize BT models by

extending the comparison to K candidates:

Por(t! =72 > ... = 75
B ek atyert R(sf,af)) (13)
i 21k @D (i ayers R(sE )]

where (71 > 72 >~ = 75) is the observed rank-

ing. Substituting (13) into (10) yields the objective of learn-
ing rewards from rankings [Rafailov et al., 2023; Song et
al., 2024]. Another straightforward approach to rankings
is breaking the ranking into pairs by selecting two candi-
dates from the list and assigning the label according to their
ranks, thereby reducing the problem of applying BT models
to all possible pairwise comparisons [Ouyang et al., 2022;
Liu et al., 2024b].

6 Applications

Reward model designing constitutes an indispensable step
before any practical applications of RL. Therefore in this
section, we briefly review successful applications of reward
models in deep RL, including control problems, generative
model finetuning, and other fields.

6.1 Control Problems

Reward models play a pivotal role in control problems, as a
fundamental mechanism for guiding decision-making in dy-
namic environments. [Christiano et al., 2017] demonstrated
their effectiveness in facilitating policy learning across di-
verse domains, including game-playing and simulated contin-
uous control tasks. In gameplay scenarios, [Fan et al., 2022]
leveraged generated rewards to enhance learning in Minecraft
tasks. In robotics, [Sontakke et al., 2023] employed reward
models to train agents across various robotic tasks. Similarly,
in autonomous driving, the design of reward functions re-
mains a critical aspect of training intelligent agents [Knox
et al., 2023].

6.2 Generative Model Post-training

Modern generative models typically feature a two-stage train-
ing procedure, where the pre-training stage involves unsuper-
vised learning on internet-scale data, and the post-training
stage fine-tunes the models and fits them for downstream
tasks. A prominent example is InstructGPT [Ouyang et al.,
2022], which employs RL to optimize model outputs based
on human preference data. Specifically, it trains a reward
model on human-ranked responses and fine-tunes the lan-
guage model to maximize this reward. This approach has be-
come a standard method for enhancing the helpfulness, harm-
lessness [Dai ef al., 2023], and general task-solving capa-
bilities of LLMs [Abramson et al., 2022]. In mathematical
problem-solving, golden rewards can be defined by compar-
ing the model-generated answers with ground-truth answers
[Luong et al., 2024] or by verifying the correctness using for-
mal solvers [Xin et al., 2024]. Some works also use LLM-
based verifiers [Zhang er al., 2024], further leveraging the
in-context learning ability provided by LLMs.
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6.3 Other Fields

In recommendation systems, [2023] trained reward models to
allow RL recommendation systems to learn from users’ his-
torical behaviors. [2020] used a reward model to automate
peer-to-peer (P2P) energy trading, while [2019] designed a
reward model to improve the management of healthcare re-
sources.

7 Evaluating Reward Models

Once reward models are developed, reliable evaluation tech-
niques are essential for comparing or selecting models for
downstream policy optimization. However, due to the am-
biguous link between reward models and final policy perfor-
mance, relying on a single evaluation perspective is often in-
sufficient [Arora and Doshi, 2021]. We categorize commonly
used reward evaluation techniques into the following three
types, which are often used in combination to achieve a more
comprehensive assessment of reward models.

7.1 Evaluation via Policy Performance

Reward model quality can be evaluated by measuring the
performance of policies trained with it. Primary metrics in-
clude ground-truth reward, task success rate, and training ef-
ficiency, with superior reward models yielding higher values
across these measures. This approach is widely adopted in
reinforcement learning literature to assess the alignment be-
tween reward models and actual objectives [Christiano et al.,
2017]. However, these metrics are sensitive to policy opti-
mization algorithms and environmental stochasticity, poten-
tially limiting their ability to independently reflect the true
performance of the reward model itself.

7.2 Evaluation via Distance Metrics

To evaluate and compare reward models, another approach
is to design distance metrics that accurately reflect the be-
havioral differences between the policies induced by these
rewards. The pioneering work EPIC [Gleave et al., 2020]
introduces canonically shaped rewards to remove ambiguity
and invariances from reward models and proposes to use the
Pearson coefficient between two canonically shaped rewards
as a measure of the reward similarity. The EPIC distance be-
tween two reward models is demonstrated to upper-bound the
performance difference between the induced policies. Lower
EPIC distances to the ground truth reward indicate superior
reward modeling capability.

Based on EPIC, [2022] further incorporates the dynamics
information when considering the invariant reward shaping
and introduces the DARD metric, which is more predictive
and accurate in quantifying the differences in rewards. Fur-
thermore, [2023] presented a general framework for design-
ing such distance metrics. The STARC metrics provided in
this framework are shown to induce both the upper bound
and the lower bound of the performance differences, and any
other metrics that possess the same property must be equiv-
alent to the STARC metrics up to bilipschitz scaling. When
datasets containing ground-truth rewards are available, dis-
tance metrics are particularly suitable for offline evaluation,
circumventing the necessity for policy learning.

7.3 [Evaluation via Interpretable Representations

Although the evaluation of reward models may not be
straightforward, we can transform them equivalently into in-
terpretable representations. [2022] proposed to transform re-
ward models with potential-based shaping and visualize the
shaped reward instead. Since potential-based shaping pre-
serves the optimal policy, characteristics of the shaped reward
may also apply to the original reward model. Alternatively,
we can evaluate the reward model through the behavior of the
induced policy [Rocamonde et al., 2023].

8 Conclusions

Recently, reward models have become a highly motivating
area of research, driven by both theoretical challenges and
practical needs across various domains. We consider the
development of reward models as a significant step before
the application of RL to real-world problems, and we hope
this survey can offer valuable insights for both researchers
and practitioners. Although our study provides a compre-
hensive overview of the topic, the design and variations of
reward models still extend beyond the scope of this discus-
sion. Interested readers can also refer to other survey papers
[Eschmann, 2021; Liu et al., 2022; Arora and Doshi, 2021;
Kaufmann et al., 2023] that focus on RL subfields closely
related to reward modeling.

8.1 Future Directions

Efficient and accurate reward modeling is a valuable research
direction with significant application prospects. It combines
increasingly mature technologies such as large models and
diffusion models with reward design and generation in rein-
forcement learning to provide behavioral feedback for agents
in perception, planning, decision-making, and navigation.
Although there is no definitive conclusion on which route can
achieve efficient reward modeling, research on various tech-
nologies in recent years has effectively promoted the develop-
ment of this field. With the continuous development of ma-
chine learning and reinforcement learning, reward modeling
has many valuable research directions in the future, includ-
ing:

1. Vectorized rewards: Constructing vectorized rewards
to replace scalarized single rewards, dynamically bal-
ancing multiple competitive reward signals to provide
agents with more comprehensive feedback.

2. Interpretating reward models: Improving the trans-
parency of reward functions and explaining the decision-
making logic behind reward models.

3. Ethical alignment and social value constraints: Quan-
tifying ethical principles and embedding them into re-
ward functions while avoiding potential side effects dur-
ing the optimization process.

4. Reward foundation models: Similar to constructing a
general representation space, consider training a founda-
tion reward model that can obtain general reward values
based on diverse inputs (such as limb movements).
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