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Abstract
As a testbed for the development of artificial intelligence (AI) techniques, Mahjong has become a hot spot in computer game
research due its characteristics of imperfect information. An important aspect of the game is the evaluation of the quality of a
hand, which significantly influences the decision-making process for players, including discarding tiles, pong, kong, and so
on. In this paper, an effective and efficient algorithm is proposed to measure the quality (i.e., deficiency) of aMahjong hand by
introducing a hierarchical branch and bound method. In the proposed approach, an updating knowledge-based octree search
method is first developed to explore all possible quasi-decompositions for one hand to ensure the correctness of the result.
Meanwhile, an updated knowledge-based evaluation method is designed to calculate the cost of each quasi-decomposition,
and a hierarchical branch and bound method is presented to accelerate the efficiency of getting its deficiency by layering the
quasi-decompositions according to the number of their tiles. Moreover, the block decomposition is further adopted in the
process of finding all quasi-decompositions to enhance its efficiency. Compared to existing methods, the proposed algorithm
not only demonstrates computational efficiency but also provides the exact deficiency in all cases. Experimental results on
different types of hands show its effectiveness and efficiency.

Keywords Mahjong · Deficiency · Branch and bound · Knowledge base · Decomposition

1 Introduction

As we all know, games are always regarded as important
platforms to develop and enhance artificial intelligence (AI)
techniques, and many games and their AI systems have been
studied and presented over the last decades (Berliner 1977;
Schaeffer et al. 2007; Wiering 2010; Shannon 1950; Sil-
ver et al. 2017; Samuel 1959; Bowling et al. 2015; Schmid
et al. 2017; Brown and Sandholm 2018; Mizukami and Tsu-
ruoka 2015; Brown and Sandholm 2019; Holcomb et al.
2018; Heinrich and Silver 2016; Yoshimura et al. 2016;
Brown and Sandholm 2017; Sandholm 2018; Brown and
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Sandholm 2019; Zhao et al. 2022; Rong et al. 2019; Jiang
et al. 2019), including Go, Chess, Backgammon, Checkers,
Poker, Mahjong, and so on. Specifically, games can be clas-
sified simply as those with perfect information and those
with imperfect information, and it is usually more difficult
to study games with imperfect information than those with
perfect information. In fact, for games with perfect informa-
tion, such as go (Silver et al. 2017), chess (Shannon 1950)
and checkers (Samuel 1959), the players (agents) can always
have full knowledge of both their own states and the states
of their opponents throughout the entire game process. On
the other hand, for games with imperfect information, such
as poker (Bowling et al. 2015) and Mahjong (Mizukami and
Tsuruoka 2015), the agents cannot accurately obtain com-
plete knowledge of the game states at all times. Therefore, the
search algorithms used for games with perfect information
to determine the response action cannot be directly applied
to games with imperfect information. Thus, it is vital and
challenging to develop AI systems for games with imperfect
information.

Among the games with imperfect information, Mahjong
contains a huge amount of invisible information during the
game, and its rules aremore complex.Thus, it can be regarded
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as one of the typical representatives of games with imperfect
information. Currently, Mahjong has been widely studied by
AI researchers and has achieved many remarkable results
(Li et al. 2020; Kurita and Hoki 2021; Mizukami and Tsu-
ruoka 2015; Sato et al. 2017; Li and Yan 2019; Wang et al.
2020; Yan et al. 2021; Atsushi et al. 2014; Tang 2014; Sil-
ver 2017; Gao et al. 2019; Yoshimura et al. 2016; Wang
et al. 2019; Ueno et al. 2019; Cheng et al. 2020; Zheng
and Li 2020; Wang et al. 2022; Zhang et al. 2022; Gao and
Li 2022). For example, by designing and introducing global
reward prediction, oracle guiding and run-time policy adap-
tion, Li et al. (2020) proposed a Mahjong AI system called
suphx based on reinforcement learning, and the test results
on the "Tenhou" platform showed its effectiveness. Kurita
and Hoki (2021) abstracted the Mahjong process by defining
multiple Markov decision processes, and then constructed
an effective search tree for optimal decision-making. The
proposed program showed excellent performance especially
when the player’s hand was close to winning. Moreover, to
effectively improve the accuracy of the algorithm,Mizukami
and Tsuruoka (2015) presented a novel method for build-
ing a Mahjong program by modeling opponent players and
performing Monte Carlo simulation with the models. The
test results on "Tenhou" platform showed that the proposed
approach is effective. In addition, to improve the accuracy of
the AI system for games with imperfect information, based
on the fact that the players’ strategy for matching opponent
players is usually better than their own best strategy in the
game process, Sato et al. (2017) proposed a new method to
classify the opponent players’ strategy by analyzingMahjong
playing records, and the experimental results verified the
effectiveness of this idea and method. Specifically, more
works of AI Mahjong can be further found in Zheng and
Li (2020), where the advantages and disadvantages of each
method are analyzed and future development directions are
also provided. While these works have made significant con-
tributions to the field of Mahjong AI, they often require a
large number of game records obtained from human profes-
sional players for training, which can be difficult to obtain.
Additionally, their underlying rationales are often difficult
to explain and demonstrate. Therefore, it is necessary and
desirable to develop a new Mahjong AI system that is more
implementable and explainable. Clearly, efficiently making
a reasonable response for the player is a crucial aspect of the
Mahjong AI program, and this is always influenced signifi-
cantly by the state of the game. Specifically, for a given hand,
the number of the tiles needed to change to form a winning
hand (i.e., deficiency)might be helpful to evaluate the quality
of the hand, and then effectively guide the player to make a
more rational decision about his/her response action. There-
fore, it is vital to design a promising approach for calculating
the deficiency of a hand.

To effectively calculate the deficiency of one hand, many
search algorithms have also been developed in recent years
(Li and Yan 2019; Wang et al. 2020, 2022; Zhang et al.
2022; Yan et al. 2021). Specifically, Li and Yan (2019) pre-
sented a quadtree-based search algorithm (QSA) by finding
and evaluating all the pseudo-decompositions to compute the
deficiency of a Mahjong hand. Wang et al. (2020) developed
a new search approach (WRA) by constructing a weighted
restarting automaton over the tropical semiring to determine
the deficiency. Furthermore, based on the numbers of pseu-
domelds and isolated tiles, Wang et al. (2022) proposed a
specific algorithm to compute the deficiency number. Addi-
tionally, Zhang et al. presented a method for calculating the
deficiency number by taking into account the numbers of
melds, jokers and pairs and their relationships in Zhang et al.
(2022). Although these methods could evaluate the quality
of a hand to a certain extent, the information of all visible
tiles on the table is not considered in them, which might
lead to inaccuracy on the deficiency of the hand in many
cases. Moreover, to alleviate the shortcoming above, Yan
et al. (2021) further developed an enhanced block deficiency
algorithm (BDA) by taking into consideration the informa-
tion of all visible tiles on the table and using the type of each
quasi-decomposition to compute its cost. Even though the
proposed block method further improves the correctness and
search efficiency of the algorithm, the updated knowledge
base is still not fully considered and the use of types would
omit some different quasi-decompositions, which could eas-
ily occur over pessimistic or optimistic estimation of the
deficiency in some cases. Furthermore, during the calculation
of deficiency, all quasi-decompositions or types of one hand
are always required to be evaluated in Li andYan (2019); Yan
et al. (2021), which is very exhaustive. Thus, it is necessary
to further develop a more promising search algorithm for the
deficiency of one hand.

Based on the above considerations, this paper presents a
novel effective and efficient algorithm (HBBA) to calculate
the deficiency of one Mahjong hand by introducing a hier-
archical branch and bound method. In particular, the main
contributions of this paper are as follows.

1) To ensure the correctness of the deficiency for a hand,
an updating knowledge-based octree search (UKOS)
method is developed to explore all possible quasi-
decompositions, and an updating knowledge-based eval-
uation (UKE) method is designed to calculate the cost of
each quasi-decomposition by fully utilizing the informa-
tion of both the tiles used in the hand and its knowledge
base. Unlike QSA (Li and Yan 2019) and BDA (Yan
et al. 2021), the UKOS method makes full use of the
knowledge base and always considers all possible cases
to create the quasi-decompositions during the search
process, while compared with the methods in Li and
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Yan (2019); Wang et al. (2020); Yan et al. (2021), the
UKE method dynamically updates the knowledge base
for each quasi-decomposition and employs four special
approaches to evaluate its cost by making full use of
its corresponding knowledge base. Then these proposed
methods can effectively guarantee the effectiveness and
correctness of the calculation.

2) To accelerate the calculation efficiency of the deficiency
for a hand, a hierarchical branch and bound (HBB)
method is presented by layering all quasi-decompositions
according to the number of their tiles and gradually evalu-
ating their costs with logical reasoning. Specifically, the
computation process will be terminated once the mini-
mal or sub-minimal cost is obtained in the current layer.
Differing from QSA (Li and Yan 2019) and BDA (Yan
et al. 2021), the HBB method only requires evaluating
a few layers when the deficiency is obtained. Then the
proposed method can effectively enhance the calculation
efficiency for the deficiency of a hand.

3) Considering the fact that the block decomposition (BD)
technique can speed up the process of finding all quasi-
decompositions for a hand (Yan et al. 2021), this method
is further adopted in the proposed algorithm. Then the
proposed algorithm has a more promising performance.

Therefore, the proposed algorithm can not only obtain a
correct deficiency for each hand but also has promising
computation efficiency. Finally, numerical experiments are
carried out to demonstrate the performance of the proposed
algorithmbycomparing itwith three relatedmethods on three
classes of datasets. The experimental results show that the
proposed algorithm can consistently obtain the correct defi-
ciency number and has more efficient performance.

The remainder of this paper is organized as follows.
Section 2 gives the related works and preliminaries. The pro-
posed algorithm is presented in Sect. 3. Section 4 provides
and discusses the experimental results. Finally, conclusions
are drawn in Sect. 5.

2 Backgrounds

In this section, preliminaries and two foundational deficiency
algorithms shall be described.

2.1 Preliminaries

Herein, some common terms and related concepts of this
paper, including deficiency, knowledge base and decompo-
sition, will be introduced, respectively.

2.1.1 Common terms

This papermainly considers the version of theMahjong game
where only the colors of bamboo (B), character (C), and dot
(D) are included. Specifically, this includes one bamboo to
nine bamboo (B1 − B9), one character to nine character
(C1 − C9), and one dot to nine dot (D1 − D9). The set of
these 27 different tiles above is denoted by MJ, with each
tile having four identical ones and a total of 108 tiles. For
convenience, this subsection provides the relevant terms and
meanings (concepts) in the Mahjong game, which are listed
in Table 1.

From Table 1,1 one can see that a meld is a chow, kong
or a pong. A chow or pong can be formed by other players’
discarded tile, while a kong can be formed by drawing four
identical tiles (concealed kong), using the fourth identical tile
with the exposed pong (exposed kong from pong), or using
three identical tiles with the one identical tile discarded from
other players (exposed kong). Additionally, a winning hand
refers to a hand that conforms to the winning rules. It is worth
noting that, except for drawing a tile from the wall, a player
can alsowin using other players’ discarded tiles or by robbing
a kong.

In particular, for a winning hand T , a decomposition π of
T is a sequence of five subsequences of T such that π [i]2
(1 ≤ i ≤ 4) is a meld and π [5] is a pair (if the case, π [5] is
also called an eye.Moreover, the combination of two tiles that
can form a chow or a pong is called premeld (abbr. pmeld),
such as (B3B4) or (C5C5), where the former is also called
a prechow (abbr. pchow).

2.1.2 Concepts

Here, the related concepts of theMahjong gamewill be given,
including deficiency, knowledge base and decomposition.

Definition 1 (deficiency Li and Yan (2019)) The deficiency
number (or simply deficiency) of a 14-tile T is defined recur-
sively:

• T has deficiency 0 if it is a winning (complete) hand;
• In general, for � ≥ 0, T has deficiency � + 1 if it has no
deficiency smaller than or equal to � and there exists a tile
t in T and another tile t ′ s.t. T [t/t ′] (the 14-tile obtained
from T by replacing t with t ′) has deficiency �.

1 In this paper, any sequence of tiles is regarded as a multiset,
which allows multiple instances for each of its elements. The usual
set operations ∪,∩, \ are also defined for multisets. Here, a multi-
set, e.g., {B3, B4, B9, D7, D9} is also written as ordered tuples like
(B3B4B9)(D7D9).
2 Suppose S is a sequence which includes k elements. We write S[i]
for the (i + 1)-th value of S for 0 ≤ i ≤ k − 1, and S[0] is the first
element of S, as represented in some programming languages.
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Table 1 Related terms and concepts in Mahjong

Common terms Explanation

hand A sequence of 13 or 14 tiles the player has drawn

chow A sequence of three consecutive tiles of the same color, such as (B3B4B5)

kong A sequence of four identical tiles, such as (B9B9B9B9)

pong A sequence of three identical tiles, such as (C5C5C5)

pair A pair of identical tiles, such as (D7D7)

meld A chow, kong, or a pong

winning (complete) hand A hand that can be decomposed into four melds and one eye, such as

T=(B1B2B3B5B5B7B7B7)(C1C2C3C7C7C7)

exposed kong The player declares a kong by a pong in his hand and a discarded tile from other players

concealed kong The player declares a kong by identical four tiles in his hand

exposed kong from pong The player declares a kong by an exposed pong and the fourth identical tile in his hand

robbing a kong The player achieves a winning hand by one tile which another player is currently trying to use to
form an exposed kong from pong.

If the deficiency of T is �, we write dfncy(T ) = �. Particu-
larly, if T is a winning (complete) hand, i.e., dfncy(T ) = 0,
we also say T is complete for simplicity.

To be precise, for a 14-tile T , the deficiency of T is the
minimumnumber of tile changes needed for T to form awin-
ning hand. Here, the tile change operations can be achieved
by drawing a tile from the wall, forming a pong or chow or
winning hand from other players’ discarded tiles, or robbing
a kong from other players’ tile that was previously used to
form an exposed kong from an exposed pong.

For example, for a 14-tile T = (B1B2B3B5B5B7B7B9)
(C1C2C3C7C7C7), since a winning hand can be obtained
when B9 is replaced with B5 or B7, or B7 is replaced with
B8, then the deficiency of T is 1. However, it is worth noting
that during the replacement process above, there must be at
least one among the tiles B5, B7 and B8 in the set of invisible
tiles. If not, we can see that the deficiency of T will not be
1. This means that the number of some invisible tiles has an
important impact on the calculation result of deficiency. For
clarity, the concept of the knowledge base is introduced and
given below.

Definition 2 (knowledge base) The knowledge base of the
agent is a 27-tuple K B. For each tile t ∈ MJ , K B(t) denotes
the remaining number of t the agent believes to be available,
which can be expressed as follows:

K B = {(x0, x1, x2, · · · , x26) | 0 ≤ xi ≤ 4, 0 ≤ i ≤ 26} (1)

where xi (0 ≤ i ≤ 8) represents the remaining number of
B1 − B9, xi (9 ≤ i ≤ 17) represents the remaining number
of C1 − C9, and xi (18 ≤ i ≤ 26) represents the remaining
number of D1 − D9 respectively.

In what follows, the update rule of K B(t) for each tile t is
given (initially, K B(t) = 4). When the agent has drawn its

13-tile (14-tile) hand at the beginning of the game, we will
let K B(t) = 4 - the number of t in the agent’s hand. After
this, the value of K B(t) will be updated as follows:

• if t has been drawn by the agent, K B(t) = K B(t) − 1.
• if t has been discarded or used to form an exposed kong
from an exposed pong by the other player, K B(t) =
K B(t) − 1.

• if t has been ponged by the other player, then K B(t) =
K B(t) − 2.

• if t has been used to form a concealed kong by the other
player, then K B(t) = K B(t) − 4.

• if t has been drawn by the other player and then declared
to form a winning hand, then K B(t) = K B(t) − 1.

• if t is chowed by the other player, after the three tiles are
sorted alphabetically, consider the following three cases:
a. when t is the left one, then K B(t+)3 = K B(t+) − 1
and K B(t++) = K B(t++) − 1.
b. when t is the middle one, then K B(t−) = K B(t−)−1
and K B(t+) = K B(t+) − 1.
c. when t is the right one, then K B(t−−) = K B(t−−)−1
and K B(t−) = K B(t−) − 1.

For clarity, the last example is also used here with
T = (B1B2B3B5B5B7B7B9)(C1C2C3C7C7C7). If the
player’s knowledge base satisfies K B(B5) > 0, K B(B7) >

0 or K B(B8) > 0, then the deficiency of T is 1; Otherwise,
if K B(B3) > 0 and K B(B4) > 0 hold, we can use B5 or
B7 to form a meld by changing B9 to B3 and changing B5
to B4, then the deficiency of T is 2. Based on this fact, the

3 Given a tile t , let t+ and t++ denote the tiles which the number of t
increasing one and two respectively, t− and t−− denote the tiles which
the number of t decreasing one and two respectively.
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concept of deficiency which can reflect the knowledge base
is further given, i.e., knowledge-aware deficiency.

Definition 3 (knowledge-aware deficiency Yan et al. (2021))
The deficiency number (or simply deficiency) of a 14-tile T
w.r.t. a knowledge base K B is defined recursively:

• T has deficiency 0 if it is complete;
• In general, for � ≥ 0, T has deficiency � + 1 if it has
no deficiency smaller than or equal to � and there exists
a tile t in T and another tile t ′ that is available in K B
(i.e., K B(t ′) > 0) s.t. T [t/t ′] has deficiency � w.r.t.
the updated knowledge base K B ′ in which K B ′(t ′) =
K B(t ′) − 1.

If the deficiency of T is �, we write dfncy(T , K B) = �. We
say T is incompletable if it has no finite deficiency.

In the following, we will further introduce the concept of
quasi-decomposition in Yan et al. (2021), where the knowl-
edge base is respected.

Definition 4 (quasi-decomposition Yan et al. (2021)) Let T
be a k-tile and K B a knowledge base. A quasi-decomposition
(qDCMP) π = (π [0], π [1], · · · , π [k]) of T w.r.t. K B is a
set of (possibly identical) subsequences of T s.t.

• k ≤ 4 and each π [i] is a meld, a pair, or a pchow.
• If k = 4, π contains at least one pair.
• Except at most one pair, all pmelds in π are completable
under K B.

• ⋃k
i=0 π [i] is contained in T .

The remainder of π in T is the sequence of tiles in T that
are not in

⋃k
i=0 π [i].

2.2 Two deficiency algorithms

In the following, the main contributions of the quadtree algo-
rithm (QSA) Li and Yan (2019) and the block deficiency
algorithm (BDA)Yan et al. (2021) shall be described, respec-
tively.

2.2.1 The quadtree algorithm

As mentioned in Li and Yan (2019), the quadtree method
determines the deficiency of one hand T by constructing and
evaluating all its possible pseudo-decompositions exhaus-
tively. Here, a pseudo-decomposition (pDCMP) is a sequence
π of five sequences, π [1], ..., π [5], s.t. π [5] is a pair, a single
tile, or empty, and for 1 ≤ i ≤ 4, eachπ [i] is ameld, a pmeld,
a single tile, or empty. In addition, π [0] = T \ ∪5

i=1 π [i] is
the sequence of remaining tiles of T . In detail, to get all the
possible pDCMPs of one hand T , the following four actions

(A1, A2, A3, and A4) are employed to construct a quadtree.
We note here that each nodeα is a string over� = {1, 2, 3, 4}
and is attached with both a pDCMP πα and a subsequence
Sα , Sα denotes the set of tiles remaining to be processed, and
t = Sα[0] is the first tile in Sα .

A1 (delete t). Define Sα1 = Sα\(t) and πα1 = πα .
A2 (make chow). If t+ or t++ is in Sα , define Sα2 = Sα \

(t t+t++), πα2[i] = (t t+t++) ∩ Sα and πα2[ j] = πα[ j],
where i is the first index in {1, 2, 3, 4} s.t. πα[i] = ∅,
and j �= i (the same below).

A3 (make eye). If (t t) ⊆ Sα andπα[5] is empty, define Sα3 =
Sα\(t t) and πα3[5] = (t t) and πα3[ j] = πα[ j] for 1 ≤
j ≤ 4.

A4 (make pong). If (t t) ⊆ Sα , define Sα4 = Sα \ (t t t),
πα4[i] = (t t t) ∩ Sα and πα4[ j] = πα[ j].

In particular, the concrete construction process of the
quadtree can be described as follows. First, an empty set
SpDCMP and an empty queue Q are respectively generated to
store the found quasi-decompositions and the nodes that need
to be further explored, and put the root node α = (Sα, πα) in
the queue Q, where Sα = T andπα is an empty set. Then, the
first node α = (Sα, πα) is popped out from Q, and the four
actions mentioned above are used to create its corresponding
child nodes. Next, for each child node, if its Sα is empty, it
will be added into SpDCMP; otherwise, it will be added into
Q. The procedures above will be continuously executed until
Q is empty.

Moreover, the evaluation process of pDCMP in the
quadtree method can be shown as follows. First, the cost
of a pDCMP (costT (pDCMP)) is predefined by the num-
ber of necessary tile changes to complete it. Besides, the
following cases are further considered to adjust the value
of cost. (1) When some πα[i] for 1 ≤ i ≤ 5 are empty
in pDCMP, its cost costT (pDCMP) will be further updated
as costT (pDCMP) − ne, where ne denotes the number of
empty πα[i] for 1 ≤ i ≤ 4. (2) When πα[5] is empty and
the number of all tiles belonging to πα[0] in T is smaller
than 3, its cost costT (pDCMP) will be further updated by
costT (pDCMP) = costT (pDCMP) − 1.

Finally, the deficiency of T is obtained by finding the
smallest one among all costT (pDCMP)s of its pDCMPs.

In summary, the framework and the idea diagram of the
quadtree algorithm can be found in Algorithm 1 and Fig. 1,
respectively.

2.2.2 The block deficiency algorithm

The block deficiency algorithm (BDA) is an enhanced ver-
sion of the quadtree algorithm (Yan et al. 2021). Differing
from the quadtree algorithm (Li and Yan 2019), all possible
types of qDCMPs for T are designed and employed in it to
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Algorithm 1 The framework of the quadtree algorithm
1: Input: A Mahjong hand T .
2: Initialize the deficiency of T d f ncy = 100;
3: Set SpDCMP = ∅ and Q = ∅;
4: Create the root node α = (Sα, πα), where Sα = T and πα = ∅;
5: Add the root node α into Q;
6: while Q �= ∅ do
7: Pop out the first element from Q denoted as α;
8: for � = 1 : 4 do
9: Generate the corresponding child node α by the �-th action

A�;
10: if Sα is empty then
11: add the child node α into SpDCMP;
12: else
13: add the child node α into Q;
14: end if
15: end for
16: end while
17: for each pDCMP in SpDCMP do
18: calculate its cost costT (pDCMP);
19: if costT (pDCMP) < d f ncy then
20: Let d f ncy = costT (pDCMP);
21: end if
22: end for
23: Output: d f ncy.

calculate the deficiency, and the knowledge base is also con-
sidered in it. Specifically, the detailed operations of BDA can
be described as follows.

First, the hand T is divided into different disconnected
blocks (the set of blocks denoted as SB), and for each block
B, all its possible qDCMPs (the set of qDCMPs denoted as
SlqDCMP) are obtained by constructing a 6-ary tree, whose
detailed procedures are similar to that in Li and Yan (2019),
where the node α is further attached with seven attributes
(m,n,p,e,re,rm,em). Herein, m, n and p are the number of
melds, pmelds and pairs in π respectively, e is the number
of pairs in π which are incompletable, re and rm are the
Boolean indexes of whether there is a tile in the remainder
tiles, which can be formed as a pair andmeld with the current
K B respectively, and em is the Boolean index of whether
there is the case that when e = 0, re = rm = 1, and we
need to make both a meld and the eye, but we cannot make
a meld from a tile in the remainder tiles after making the eye

starting from a tile in them. Then, for each block, all different
types of its local qDCMPs (the set of different types denoted
as Sltypes) are decided by comparing their seven attributes,
and the various types of each block are fully combined to
get all possible types of T , where the set of the all possible
types of T is denoted as STtypes . After the generation of S

T
types ,

each type t ypeT of STtypes is evaluated by its corresponding
seven attributes (m,n,p,e,re,rm,em) and another two indica-
tors ke and km, where ke and km are the Boolean indexes
of whether there is a pair and a meld in K B, respectively.
Finally, according to the cost of each type t ypeT in STtypes ,
the smallest one is chosen as the deficiency of T .

In summary, the framework and the idea diagram of the
block deficiency algorithm can be found in Algorithm 2 and
Fig. 2, respectively.

Algorithm 2 The framework of the block deficiency algo-
rithm
1: Input: A Mahjong hand T and its knowledge base K B.
2: Initialize the deficiency of T d f ncy = 100;
3: Divide T into different blocks, and their set is denoted by SB ;
4: for each block B in SB do
5: Generate all possibleqDCMPs, and their set is denoted by SlqDCMP;

6: Find the various types of SlqDCMP, and their set is denoted by

Sltypes ;
7: end for
8: Join each type in different Sltypes fully to get all possible types of T ,

and their set is denoted by STtypes ;
9: Set the values of ke and km based on K B;
10: for each type t ypeT in STtypes do
11: Calculate its cost costT (t ype) according to its seven attributes

(m, n, p, e, re, rm, em) and ke and km;
12: if costT (t ype) < d f ncy then
13: Let d f ncy = costT (t ype);
14: end if
15: end for
16: Output: d f ncy.

Clearly, based on the descriptions of QSA and BDA
above, it is evident that the evaluation of pDCMPs in both
methods does not fully take into account the knowledge
base. As a result, an accurate deficiency number cannot

Fig. 1 The idea diagram of the
quadtree algorithm
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Fig. 2 The idea diagram of the block deficiency algorithm

be obtained. For example, with respect to the hand T 1 =
(B1B2B5B6B7)(C1C1C1C4C5C6C7)(D3D3), since T 1
can be completed by replacing the tile C4 or C7 with
B3, the deficiency of T 1 can be calculated as 1 by the
rule of QSA. Noticeably, when four tiles of B3 have
already been revealed on the table, the real deficiency of
T 1 will not be 1, but the one obtained by QSA still is
1. On the other hand, with respect to the hand T 2 =
(B1B5B7B8B9)(C2C3C4C8C8C8C9)(D2D5)withknowl-
edge base K B = (012000011)(110001000)(100100110)
and its one qDCMP π = (B7B8B9)(C2C3C4C8C8C8),
since (B7B8B9), (C2C3C4) and (C8C8C8) are three
melds, and the tile B1 in the remainder tiles just can form
one meld (B1B2B3) with the tiles B2 and B3 in its knowl-
edge base K B, one can get m = 3,n = 0,p = 0, e =
0, re = 0, rm = 1 and em = 0. Meanwhile, since there is
just one pair (B3B3) in its knowledge base K B, one have
ke = 1 and km = 0. Then, the cost of this π can be calcu-
lated as 4 by the rule of BDA. However, after forming the
meld (B1B2B3) based on T 2 and its knowledge base K B,
it is not possible to form the eye (B3B3) in fact, and vice
versa. Thus, the real cost of this π should be infinite, but
not 4. Moreover, their final steps are often time-consuming
to calculate the deficiency, and although the full tree are all
used in them to search all possible pDCMPs for a hand, some
cases are still neglected, thus leading to incorrect deficiency.
Based on these considerations, a novel deficiency algorithm
is proposed and described in the following section.

3 The proposed algorithm

As described in the above sections, many methods have been
developed to calculate the deficiency of a hand (Li and Yan
2019; Wang et al. 2020, 2022; Yan et al. 2021). However,
there are still several shortcomings in them.For example, dur-
ing the process of finding all possible quasi-decompositions,
the knowledge base is always not considered and some quasi-
decompositions are often easily omitted. For instance, when

a hand owns a pmeld B3B4, and it can be expanded to
both B2B3B4 and B3B4B5 according to its corresponding
knowledge base K B. However, the method proposed in Yan
et al. (2021) only updates its K B in one way, while there are
actually two different ways. Moreover, for the evaluation of
quasi-decomposition, the information of the knowledge base
is not always fully utilized, while all quasi-decompositions
are always required to be evaluated during the deficiency cal-
culation, which is exhaustive. To alleviate these drawbacks,
we propose a novel search algorithm to calculate the defi-
ciency of a Mahjong hand in this section. Specifically, an
updating knowledge-based octree search (UKOS) method
and an updating knowledge-based evaluation (UKE) method
are proposed to find all possible quasi-decompositions and
calculate the cost of each quasi-decomposition, respectively.
Meanwhile, a hierarchical branch and bound (HBB) method
is presented to calculate the deficiency of the hand by lay-
ering all quasi-decompositions according to the number of
their tiles, and the block decomposition (BD) technique is
further adopted in the proposed algorithm to enhance search
efficiency.

For the convenience of the later discussions, let T denote
a 14-tile hand, K B denote a knowledge base, π denote a
qDCMP of T , Rπ and K Bπ denote the remainder of T and
the modified K B under π respectively. Same as the symbol
in BDA,m and n denote the number of melds and pmelds in
π respectively, p denotes the number of pairs in all pmelds, e
denotes the Boolean index of whether there is a pair acting as
an eye. Obviously, one can always have 3×m+2×n ≤ 14,
n > p > e and e = 0 or e = 1.

3.1 UKOSmethod

As pointed out in Refs. Li and Yan (2019); Yan et al. (2021),
it is very vital to find all suitable quasi-decompositions for
one hand to get its real deficiency. However, this is still not
achieved because the knowledge base is not fully considered
and some quasi-decompositions are always omitted in this
process. Thus, to do this, we propose the following UKOS
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method to find all possible quasi-decompositions for one
hand.

Similar to the quadtree search method (Li and Yan 2019),
in the UKOS method, each node α is represented as a
string over � = {1, 2, 3, 4, 5, 6, 7, 8} and is attached with
(πα, K Bα, Fα, Sα), which is created by a possible action
except for the root node. Here, πα represents a qDCMP of
T , K Bα represents a modified K B under πα , Fα represents
the value of a four-tuple (m,n,p,e), and Sα represents the
set of tiles in T that are yet to be processed. In the UKOS
method, there are eight actions, denoted as ACT I ON =
{A1, A2, A3, A4, A5, A6, A7, A8}, which are used to create
the child nodes. Specifically, the concrete procedure of the
UKOS method can be described as follows.

First, an empty set SqDCMP and an empty queue Q are
generated, which will be used to store the found quasi-
decompositions and the nodes to be further explored respec-
tively, the root node ε = (πε, K Bε, Fε, Sε) is created with
Sε = T , K Bε = K B, Fε = (0, 0, 0, 0) and πε = {πε[i] =
∅ | i = 0, 1, 2, 3, 4}, and we put the root node ε in Q.

Then, the first node α = (πα, K Bα, Fα, Sα) in the queue
Q is popped out, and the eight actions mentioned above
will be respectively used for it to create its correspond-
ing eight child nodes α� = (πα�, K Bα�, Fα�, Sα�), where
� ∈ {1, 2, 3, 4, 5, 6, 7, 8}. Specially, the detail process of
each action A� to generate its corresponding child node
α� = (πα�, K Bα�, Fα�, Sα�) shall be described in the fol-
lowing, where let t = Sα[0] be the first tile in Sα , and
Sα�, πα�, K Bα� and Fα� are initially set to Sα, πα, K Bα and
Fα , respectively.

A1 (delete t). Set Sα1 = Sα \ (t).
A2 (make chow). If t+ and t++ is in Sα , set Sα2 = Sα \

(t t+t++), Fα2(m) = Fα(m)+1 and πα2[i] = (t t+t++)

and πα2[ j] = πα[ j], where i is the first index in
{0, 1, 2, 3, 4} with πα[i] = ∅ and j �= i (the same as
below).

A3 (make pchow-type1). If t+ is in Sα and K B(t−) > 0,
set Sα3 = Sα \ (t t+), πα3[i] = (t t+), πα3[ j] = πα[ j],
K Bα3(t−) = K Bα(t−) − 1, and Fα3(n) = Fα(n) + 1.

A4 (make pchow-type2). If t+ is in Sα and K B(t++) > 0,
set Sα4 = Sα \ (t t+), πα4[i] = (t t+), πα4[ j] = πα[ j],
K Bα4(t++) = K Bα(t++)−1, and Fα4(n) = Fα(n)+1.

A5 (make pchow-type3). If t++ is in Sα and K B(t+) > 0,
set Sα5 = Sα\(t t++),πα5[i] = (t t++),πα5[ j] = πα[ j],
K Bα5(t+) = K Bα(t+) − 1, and Fα5(n) = Fα(n) + 1.

A6 (make pair). If (t t) ⊆ Sα and K B(t) > 0, set Sα6 =
Sα\(t t), πα6[i] = (t t), πα6[ j] = πα[ j], K Bα6(t) =
K Bα(t)−1, and Fα6(n) = Fα(n)+1, Fα6(p) = Fα(p)+
1.

A7 (make eye). If e = 0 and (t t) ⊆ Sα , set Sα7 = Sα \ (t t),
πα7[i] = (t t),πα7[ j] = πα[ j], and Fα7(n) = Fα(n)+1,
Fα7(p) = Fα(p) + 1, Fα7(e) = 1.

A8 (make pong). If (t t t) ⊆ Sα , set Sα8 = Sα\(t t t),πα8[i] =
(t t t), πα8[ j] = πα[ j], and Fα8(m) = Fα(m) + 1.

Next, for each child node α�, if its Sα� is empty, it will be
added into SqDCMP; otherwise, it will be added into Q.

Finally, the first node in Q will be continuously popped
out and executed with the above operations until Q is empty.

Based on the above descriptions, one can find that the
proposed UKOS method employs eight actions to search all
possible quasi-decompositions for one hand, and the knowl-
edge base is always dynamically updated during the whole
search process. Unlike the methods (Li and Yan 2019; Yan
et al. 2021) that do not consider the changing of the knowl-
edge base even for the knowledge base and alwaysmiss some
quasi-decompositions during the search process, the UKOS
method makes full use of the knowledge base and always
considers all possible cases to create the quasi-decomposition
during the search process. Thus, it could ensure the effective-
ness and completeness of the found quasi-decompositions.
For clarity, the framework of the UKOS method is also pro-
vided in Algorithm 3.

Algorithm 3 The framework of the UKOS method
1: Input: A Mahjong hand T and its knowledge base K B.
2: Set SqDCMP = ∅ and Q = ∅;
3: Create the root node ε = (πε, K Bε, Fε, Sε), where Sε = T , K Bε =

K B, Fε = (0, 0, 0, 0) and πε = {πε[i] = ∅ | i = 0, 1, 2, 3, 4};
4: Add the root node ε into Q;
5: while Q �= ∅ do
6: Pop out the first element from Q denoted as α;
7: for � = 1 : 8 do
8: Generate the corresponding child node α� =

(πα�, K Bα�, Fα�, Sα�) by the �-th action A� in ACT I ON ;
9: if Sα� is empty then
10: add the child node α� into SqDCMP;
11: else
12: add the child node α� into Q;
13: end if
14: end for
15: end while
16: Output: The set SqDCMP.

3.2 UKEmethod

In Li and Yan (2019); Wang et al. (2020), the cost of each
qDCMP π is just calculated by its own information, where
the knowledge base is not considered, which might lead to
a severally wrong evaluation for its quality in some cases.
Moreover, although the BDA method (Yan et al. 2021) has
taken into consideration the fact that the knowledge base shall
be dynamically updated during the process of generating the
remainder eye and/or melds, the knowledge base is still not
fully considered. For example, suppose we need to make
both an eye and one meld based on K Bπ , where a pair and
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a meld have just existed and there is a co-used tile in them,
so the indicators ke and km will still be set to 1, and the cost
might be wrong. For clarity, the following example is further
provided to show this shortcoming.

Example 1 Let

T = (B1B1B1B2B4B6B6B8B9)(C1C1C1C6C7)

K B = (0, 1, 0, 0, 0, 0, 0, 0, 1,

0, 1, 0, 1, 0, 0, 1, 1, 1, 0, 0, 0, 1, 0, 1, 0, 0, 1)

It is easy toobtain oneofqDCMPsπ = (B1B1B1)(C1C1C1)
(C6C7)(B6B6), where the pmeld C6C7 can form a meld
using the tileC8 in the knowledge base. Obviously, a meld is
still needed to complete π , as rm = 0 and km = 1, then the
deficiency number will be computed as 4. In fact, there are
no melds in the knowledge base as the tile C8 has been used
to form meld for the pmeld C6C7. Thus, the real deficiency
is infinite.

Based on the above consideration, the knowledge base
should be further comprehensively considered during the
process of calculating the cost of each qDCMP. To alleviate
this shortcoming, this paper shall present a more promising
approach to compute the cost of each π . Specifically, based
on the structure of the qDCMP mentioned in the last sub-
section, the concept of the cost of qDCMP is first given as
follows.

Definition 5 (cost) Let π be a qDCMP of a Mahjong hand
T under the knowledge base K B, Fπ be a feature of π ,
Rπ and K Bπ be the remainder of T under π and the
modified K B of π , respectively. The cost of π , written
cost(π, Fπ , Rπ , K Bπ ), is the number of the missing tiles
required to complete four melds and one pair under Rπ and
K Bπ . If a qDCMP is incompletable, then we say it has an
infinite cost.

From the definition of cost above, one can intuitively find
that the cost of π could be simply calculated by counting the
number of the missing tiles required to complete it based on
K Bπ . So, the calculation formula for the cost of π can be
described by

cost = 14 − 3 × m − 2 × (n − e) − 2 × e − ue − um, (2)

where ue and um denote the maximal number of the tiles in
Rπ used to complete the eye and the remainder 4−m−n+e
melds, respectively. Obviously, we has ue = 0 if e = 1, and
um = 0 ifm + n − e = 4. Specially, the value of ue can be
given by

ue =
⎧
⎨

⎩

1, if e = 0 and frp = 1,
0, if e = 1 or if e = 0 and frp = 0 and fkp = 1,
−100, otherwise,

(3)

where frp and fkp represent the Boolean index of whether
there is a tile in Rπ which can form an eye based on K Bπ and
whether there is a pair in K Bπ respectively, and ue = −100
means that there is no tile in Rπ which can form an eye based
on K Bπ and there is no pair in K Bπ . Meanwhile, the value
of um can be given by

um =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

0, ifm + n − e = 4,
4 − m − n + e, ifm + n − e < 4 and frm

≥ 4 − m − n + e,
frm, if 4 − m − n + e < 4, frm

< 4 − m − n + e and
fkm ≥ 4 − m − n + e − frm,

−100, otherwise.

(4)

where frm and fkm represent themaximal number of the tiles
in Rπ which can be simultaneously used to form the melds
based on K Bπ and that of the melds which can be simultane-
ously created in K Bπ respectively, and um = −100 means
that there are no enough tiles in Rπ to form 4 − m − n + e
melds based on K Bπ and there is no enough melds in K Bπ

to complete π .
Furthermore, to save computational resources, a more

simple and achievable approach for the cost of π is further
presented with the following propositions.

Proposition 1 If e = 1 and m + n − e = 4, then the cost of
π is 4 − m.

Proof In this case, we already have one eye, m melds and
n − e pmelds, and have n − e = 4 − m. So, the remaining
number of the tiles needed to form the winning hand is 14−
3 × m − 2 × (4 − m) − 2 × e, which is equal to 4 − m. 
�
Proposition 2 If e = 0 and m + n = 4, then the cost of π is
6 − m − ue.

Proof In this case, we already have m melds and n pmelds,
and have n = 4 − m. Moreover, due to the definition of ue,
then the remaining number of the tiles needed to form the
winning hand is 14 − 3 × m − 2 × (4 − m) − ue, which is
equal to 6 − m − ue. 
�
Proposition 3 If e = 1 and m + n − e < 4, then the cost of
π is 14 − 3m − 2n − um.

Proof In this case, we already have one eye, m melds and
n− e pmelds, and have n− e < 4−m. Then 4−m−n+ e
melds are needed to form to complete this π . Moreover, due
to the definition of um, then the remaining number of the
tiles needed to form the winning hand is 14 − 3 × m − 2 ×
(n−e)−2×e−um, which is equal to 14−3m−2n−um.


�
Proposition 4 If e = 0 and m + n < 4, then the cost of π is
14 − 3m − 2n − u, where u denotes the maximal number of
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the tiles in Rπ which can be used to simultaneously form an
eye and 4 − m − n melds based on K Bπ .

Proof In this case, we already have m melds and n pmelds,
and have n < 4−m. Then both one eye and 4−m−nmelds
are needed to form to complete thisπ .Moreover, according to
the definition of u, the remaining number of the tiles needed
to form the winning hand is 14 − 3 × m − 2 × n − u. 
�

In fact, the value of u is very closely related to that of ue,
and if ue = −100, u will also be set to −100, which means
there is no need to further calculate the cost of π and the
cost of π is infinite. Moreover, when ue = 0 or ue = 1, the
following two cases shall be considered to decide the value
of u.

(i) When ue = 1. In this case, one tile in Rπ must be
used to form an eye with K Bπ , and the remainder melds
will be formed based on the corresponding modified
Rπ (denoted as R

′
π ) and modified K Bπ (denoted as

K B
′
π ), where R

′
π = Rπ \ (t), K B

′
π (t) = K Bπ (t) − 1,

and t is a tile belonging to the set R
′
t = {t | t ∈

Rπ and t can form an eye based on K Bπ }. Moreover,
since there might be more tiles in Rπ which can be used
to form an eye with K Bπ , the maximal number of the
tiles in Rπ which can be used simultaneously to form
an eye and melds based on K Bπ would be 1 + ummax1,
where ummax1 represents the maximal value of um for
all kinds of R

′
π and K B

′
π .

(ii) When ue = 0. In this case, there is no tile in Rπ which
can be used to form an eye with K Bπ . So, the eye must
be formed based on K Bπ , and the remainder melds will
be formed based on Rπ and the corresponding modified
K Bπ (denoted as K B

′′
π ), where K B

′′
π (t) = K Bπ (t) −

2, and t is a tile belonging to the set R
′′
t = {t | t ∈

Rπ and K Bπ (t) > 1}. Moreover, since there might be
more pairs in K Bπ , the maximal number of the tiles in
Rπ which can be used simultaneously to form an eye and
melds based on K Bπ would be ummax2, where ummax2

represents the maximal value of um for all kinds of K B
′′
π

based on Rπ .

Thus, based on the above discussions and analyses, the
value of u will be given by

u = max(1 + ummax1, ummax2). (5)

In summary, from the abovedescriptions and analyses, one
can see that the proposed UKE method makes full use of the
characteristic of each qDCMP and fully considers the chang-
ing of the knowledge base during the process of evaluating
its cost. Differing from theQSA (Li andYan 2019) andWRA
(Wang et al. 2020), where the cost of each qDCMP π is just
calculated by its own information, the UKEmethod employs

the information of bothqDCMP and its corresponding knowl-
edge base during the evaluation process. Meanwhile, unlike
the BDA (Yan et al. 2021), where seven attributes and two
indicators ke and km are utilized to evaluate the cost of each
type, the UKE method updates the knowledge base dynami-
cally for each qDCMP and employs four special approaches
to evaluate its cost by making full use of its corresponding
knowledge base. Therefore, it could not only effectively save
the computational resource, but also correctly calculate the
cost of each qDCMP. For clarity, the framework of the UKE
method is further provided in Algorithm 4. Herein, we let the
cost of a qDCMP be 100 when it cannot be completed.

Algorithm 4 The framework of the UKE method
1: Input: A Majhong hand T , a qDCMP π , the feature of π Fπ =

(m,n,p,e), and its corresponding knowledge base K Bπ .
2: Initialize the cost of π cost = 100;
3: if e = 1 and m + n − e = 4 then
4: Let cost = 4 − m.
5: end if
6: if e = 0 and m + n − e = 4 then
7: Calculate the remainder Rπ of π under T , and the value of ue by

Eq.(3);
8: Let cost = 6 − m − ue.
9: end if
10: if e = 1 and m + n − e < 4 then
11: Calculate the remainder Rπ of π under T , and the value of um

by Eq.(4);
12: Let cost = 14 − 3m − 2n − um.
13: end if
14: if e = 0 and m + n − e < 4 then
15: Calculate the remainder Rπ of π under T , and the value of u by

Eq.(5);
16: Let cost = 14 − 3m − 2n − u.
17: end if
18: if cost > 100 then
19: Let cost = 100
20: end if
21: Output: cost .

3.3 HBBmethod

Asmentioned above, the deficiency of one hand is always cal-
culated by evaluating all its quasi-decompositions in Li and
Yan (2019); Yan et al. (2021), which might be more exhaus-
tive. Moreover, it should be noted that the branch and bound
method is often able to improve the search efficiency for the
integer programming problem. Thus, by making full use of
the branch and bound method, an HBB method is designed
to compute the deficiency of one hand here. In detail, the
rationality and concrete operation of the HBB method will
be analyzed and described as follows.

In particular, from the definition of the deficiency and the
cost for qDCMP, one can easily find that for a given hand
T , the qDCMP with more tiles always owns a lower cost in
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most cases. So, their costs would be more likely to reach
the real deficiency, and the qDCMPwith more tiles should be
first checked during the process of calculating the deficiency.
Moreover, it should be noted that for theqDCMPs which have
the same number of tiles, there are at most two combinations
of the value of m and n. In fact, for each qDCMP with m
melds and n pmelds, there are at most two sets of integer
solutions for m and n to meet the constraints 0 ≤ m ≤
4, 0 ≤ n ≤ 5 and 3m + 2n ≤ 14. Specifically, to clearly
find the relationship between the number of the tiles in one
qDCMP and its cost, Table 2 lists all possible cases about
them, where all qDCMPs are divided into 15 layers according
to the number of their tiles.

From Table 2, one can easily get that as the number of
the tiles decreases in qDCMP, the minimal cost is gradu-
ally increased, and the qDCMPs with larger m always own
a smaller minimal cost in the same layer. So, for one hand
T, if the corresponding minimal cost is found in the layer
whose qDCMPs owning the most tiles, it will be not neces-
sary to further evaluate the costs of otherqDCMPs.Moreover,
according toTable 2, one can also find that for a givenqDCMP
layer, although its corresponding minimal cost is not found,
it will be also not necessary to further evaluate the costs of
the qDCMPs with fewer tiles when the minimal cost of the
next layer can be found in the current layer. Specially, we
define the minimal cost of the next layer as the sub-minimal
cost for the current layer. Thus, to calculate the deficiency of
one hand T, we can first divide its all qDCMPs by the number
of their tiles, and then gradually check them as the number of
their tiles decreases. When the minimal cost is found by one
qDCMP or the sub-minimal cost is found among all qDCMPs
in the current layer, the deficiency of T will be directly get
by the minimal cost or the sub-minimal cost. For clarity,
Table 3 further lists the minimal cost and the sub-minimal
cost for all different layers. Furthermore, when both the min-
imal cost and the sub-minimal cost are not obtained in the
current layer, one can also get from Table 2 that there is only
a fewer number of layers but not all the remaining layers that
need to further evaluate. This is due to the fact that among
the remaining layers, the minimal cost of some layers will
be larger than the obtained best cost in the current layer. For
example, when we get the best cost is 6 in the 7-th layer, it is
just necessary to further evaluate the 8-th and 9-th layers at
most. So, based on the above analyses and discussions, the
proposed HBB method could effectively enhance the calcu-
lation efficiency for the deficiency of one hand. Specifically,
the maximal layer needed to further evaluate for different
costs and the overall framework of the HBB method is fur-
ther provided and described in Table 4 and Algorithm 5,
respectively.

In summary, from the abovedescriptions and analyses, one
can see that the proposed HBB method divides all qDCMPs
into different layers according to the number of their tiles and

calculates the costs of qDCMPs layer by layer to evaluate the
deficiency. Unlike both QSA Li and Yan (2019) and BDA
Yan et al. (2021), where the deficiency of one hand is just
got when its all qDCMPs have been wholly evaluated, the
HBB method only needs to evaluate a few numbers of layers
when the deficiency is obtained. Thus, the proposed method
could effectively enhance the calculation efficiency for the
deficiency of one hand.

Algorithm 5 The framework of the HBB method
1: Input: A Majhong hand T , all its qDCMPs.
2: Initialize the deficiency of T d f ncy = 100;
3: Divide all qDCMPs of T into different layers by the number of their

tiles, and sort them as the number of tiles decreases;
4: Set the index of the current layer layerindex = 1, the maximal

number of the layers needed to further evaluate nummax = 15, and
the estimate deficiency of T d f ncyT = 100;

5: while layerindex ≤ nummax do
6: Divide all qDCMPs in the i-th layer based on the value ofm into

two distinct groups, labeled as Group 1 and Group 2 respectively, as
shown in Table 2;

7: Set the current obtained best cost costbest = 100;
8: for each qDCMP πi in Group 1 do
9: Calculate the cost costi of πi by Algorithm 4;
10: if costi=the minimal cost in the current layer then
11: Let d f ncy = costi ;
12: Break;
13: end if
14: if costi < costbest then
15: Let costbest = costi ;
16: end if
17: end for
18: if costbest=the sub-minimal cost in the current layer then
19: Let d f ncy = costbest ;
20: Break;
21: end if
22: for each qDCMP πi in Group 2 do
23: Calculate the cost costi of πi by Algorithm 4;
24: if costi < costbest then
25: Let costbest = costi ;
26: end if
27: end for
28: if costbest=the sub-minimal cost in the current layer then
29: Let d f ncy = costbest ;
30: Break;
31: else
32: if costbest < d f ncyT then
33: Let d f ncyT = costbest ;
34: Reset the value of nummax by costbest according to Table

4;
35: end if
36: end if
37: Let layerindex = layerindex + 1;
38: end while
39: Let d f ncy = d f ncyT ;
40: Output: d f ncy.
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Table 2 The relationship
between the number of the tiles
in qDCMP and its possible costs

Layer The number
of tiles in
qDCMP

Possible costs

Group 1 cost Group 2 cost

1 14 m = 4,n = 1 0 – –

2 13 m = 3,n = 2 1 – –

3 12 m = 4,n = 0 1,2,100 m = 2,n = 3 2

4 11 m = 3,n = 1 2,3,100 m = 1,n = 4 3

5 10 m = 2,n = 2 3,4,100 m = 0,n = 5 4

6 9 m = 3,n = 0 3,4,5,100 m = 1,n = 3 4,5,100

7 8 m = 2,n = 1 4,5,6,100 m = 0,n = 4 5,6,100

8 7 m = 1,n = 2 5,6,7,100 – –

9 6 m = 2,n = 0 5,6,7,8,100 m = 0,n = 3 6,7,8,100

10 5 m = 1,n = 1 6,7,8,9,100 – –

11 4 m = 0,n = 2 7,8,9,10,100 – –

12 3 m = 1,n = 0 7,8,9,10,11,100 – –

13 2 m = 0,n = 1 8,9,10,11,12,100 – –

14 - - - – –

15 0 m = 0,n = 0 9,10,11,12,13,14,100 – –

Table 3 The minimal and
sub-minimal cost in different
layers

Layer 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

The minimal cost 0 1 1 2 3 3 4 5 5 6 7 7 8 - 9

The sub-minimal cost 0 1 2 3 3 4 5 5 6 7 7 8 9 - 9

Table 4 The maximal layer
needed to further evaluate for
different costs

The obtained cost 0 1 2 3 4 5 6 7 8 9 ≥ 10

The maximal layer needed to further evaluate 1 2 3 4 6 7 9 10 12 14 15

3.4 The framework of the HBBA

By designing an updating knowledge-based octree search
(UKOS) method, an updating knowledge-based evaluation
(UKE) method and a hierarchical branch and bound (HBB)
method above, the overall detailed procedure of the proposed
algorithm shall be described here. Moreover, by consider-
ing that the BD technique (Yan et al. 2021) can effectively
enhance the search efficiency of finding all possible qDCMPs
for one hand, it is further introduced in the proposed algo-
rithm by combining with the UKOS method. Specifically,
an important definition is first provided below, and then the
enhanced UKOS method will be described.

Definition 6 (knowledge-aware block) Given a Mahjong
hand T and its knowledge base K B, a subsequence B of
T is a K B-block if

• B �= ∅ and all tiles in B have the same color;
• If t is a tile in B, then any tile in T that is K B-connected
to t is also in B,

where two tiles t = (c, n) and t ′ = (c′, n′) are K B-
connected if (i) t = t ′, or (ii) either T or K B has a tile
t ′′ s.t. (t t ′t ′′) is a chow.

In detail, the concrete operation of the enhanced UKOS
method can be described as follows. For one hand T , the
first operation in the enhanced UKOSmethod is to divide the
tiles in T into different blocks according to the above defi-
nition. Then the UKOS method will be used for each block
to search all its possible local qDCMPs. Finally, for different
blocks, their local qDCMPs will be suitably integrated to cre-
ate all possible qDCMPs for T . Clearly, the most important
part is the final step in the enhanced UKOS method. So, its
specific rules are only provided here. (1) For the generation
of qDCMPs for T , it can be easily obtained by just com-
bining all possible cases from each block’s qDCMPs except
for the qDCMPs from different blocks which have more than
one F(e) = 1. (2) For the generation of the feature Fπ of
each qDCMP for T , the value of Fπ can be just obtained
by respectively adding the components of the corresponding
local features. (3) For the generation of the knowledge base

123



A hierarchical branch... 3333

K Bπ of each qDCMP for T , the value of K Bπ can be eas-
ily got by setting its component to the minimal component
among the corresponding knowledge bases, respectively. For
clarity, the following example is further provided to illustrate
the above rules.

Example 2 Suppose πB1 and πB2 are one of qDCMPs of the
block B1 and B2 respectively, where πB1 = (B1B2B3)
(B5B5), FπB1

= (1, 1, 1, 1),

K BπB1
= (1, 2, 0, 2, 0, 1, 2, 1, 1,

1, 2, 1, 1, 3, 4, 1, 2, 0, 2, 2, 1, 3, 0, 1, 2, 3, 4)

and πB2 = (C3C4), FπB2
= (0, 1, 0, 0),

K BπB2
= (1, 2, 0, 2, 0, 1, 2, 1, 1,

1, 1, 1, 1, 3, 4, 1, 2, 0, 2, 2, 1, 3, 0, 1, 2, 3, 4).

Then the resulted qDCMP based on them is π
′ = (B1B2B3)

(B5B5)(C3C4), the resulted feature based on them is F
′ =

FπB1
+ FπB2

= (1, 2, 1, 1), and the resulted knowledge

base based on them is K B
′
(t) = min(K BπB1

, K BπB2
) =

(1, 2, 0, 2, 0, 1, 2, 1, 1, 1, 1, 1, 1, 3, 4, 1, 2, 0,
2, 2, 1, 3, 0, 1, 2, 3, 4).

In summary, according to the descriptions of the enhanced
UKOS method, UKE method and HBB method, the frame-
work and the idea diagram of HBBA are presented in
Algorithm 6 and Fig. 3 respectively, where the main works
have been marked by underline.

Algorithm 6 The framework of the HBBA
1: Input: A Mahjong hand T and its knowledge base K B.
2: Divide the hand T into different blocks based on the definition of the

knowledge-aware blocks, and store them in the set SBlock ;
3: for each block Bi in SBlock do
4: Create all its possible qDCMPs and their corresponding features FBi

π

5: and K BBi
π under K B by Algorithm 3;

6: end for
7: Generate all possible qDCMPs and their corresponding features Fπ

and K Bπ for T based on the updating rules in subsection 3.4.
8: Calculate the deficiency of T by Algorithm 5;
9: Output: The deficiency of T .

From Algorithm 6, one can find that for one hand T , all
its possible qDCMPs and their corresponding features and
updated knowledge bases are first created by the enhanced
UKOS method, and then the UKE method and HBB method
are employed to calculate its deficiency. In particular, for the
enhancedUKOSmethod, an octree structure is constructed to
search all possible quasi-decompositions and the knowledge
base is dynamically updated during the search process, such
that the rationality and effectiveness of the search results can

be guaranteed. For theUKEmethod, allqDCMPs are suitably
classified into four cases, anddifferent equations are designed
to calculate their costs based on the updating knowledge
bases and their characteristics, respectively. So, the compu-
tational resource could be effectively saved, and the cost of
qDCMP could be got correctly. For the HBB method, the
idea of the branch and bound method is introduced and inte-
grated to find the deficiency, where all possible qDCMPs are
first divided into different layers based on the number of tiles
in them, and the costs of the qDCMPs are computed layer
by layer until the minimal or sub-minimal cost is found in
the current layer or the specific number of layers have been
searched. Then this HBB method could effectively save a
larger number of evaluations on qDCMPs during the calcu-
lation process of deficiency. Thus, the proposed algorithm
could effectively and efficiently calculate the deficiency of
one hand.

Moreover, from Fig. 3, one can easily see that differing
from QSA in Li and Yan (2019), HBBA further incorporates
theBD technique, employs eight actions to search all possible
qDCMPs for one hand, dynamically updates the knowledge
base of each qDCMP, and introduces the HBBmethod to cal-
culate the deficiency. Meanwhile, unlike BDA in Li and Yan
(2019), HBBA takes fully into consideration the knowledge
base during the whole calculation process of deficiency, and
logical reasoning is also added to save the computational bud-
get. Therefore, HBBA has a more promising performance to
evaluate the quality of one hand.

3.5 Complexity analysis

Furthermore, the complexity of the proposed algorithm is
also discussed here. In particular, according to the descrip-
tions of HBBA above, its main operations are the enhanced
UKOS method and HBB method. So, their complexities are
just discussed below.

First, for the enhanced UKOS method, one can see that
its main steps are to divide the hand T into different blocks,
search each block to find all its possible qDCMPs, and com-
bine the localqDCMPs of eachblock to obtain the allqDCMPs
of T . In fact, the dividing process of T only requires sorting
the tiles in T and visiting each tile one time, so its complex-
ity is O(N · log2 N + N ), where N denotes the number of
tiles in T . Meanwhile, all qDCMPs of each block are gener-
ated by constructing an octree tree and visiting each node,
so its complexity is O(8N−1). Moreover, all qDCMPs of T
can be got by finding all possible combinations of the local
qDCMPs in each block, so its complexity is O(8N ·(N−1)).
Thus, the complexity of the enhanced UKOS method is
O(8N ·(N−1) + 8N−1 + N · log2 N + N ) = O(8N ·(N−1)).

On the other hand, for the HBB method, one can get that
its main steps are to classify all qDCMPs of T into different
layers, evaluate the qDCMPs in each layer and compare the
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Fig. 3 The idea diagram of HBBA

cost of each qDCMP to obtain the deficiency of T . Actually,
the classification of qDCMPs can be achieved just by count-
ing the number of the tiles in each qDCMP, so its complexity
is O(N · 8N−1). Meanwhile, the cost of each qDCMP can
be obtained by recording its corresponding feature and cal-
culating the parameters ue, um or u based on its remainder
tiles and knowledge base, so the complexity of the evaluation
for each layer is O(max{K1, K2} · 8N−1), where K1 and K2

denote the number of tiles in the remainder tile and the knowl-
edge base, respectively. Moreover, the deficiency of T can
be easily obtained by comparing the cost of each qDCMP, so
its complexity is O(8N−1). Thus, the complexity of the HBB
method is O(N · 8N−1 + max{K1, K2} · 8N−1 + 8N−1) =
O((max{K1, K2}+ N +1) ·8N−1). Overall, the complexity
of HBBA is O(8N ·(N−1)+(max{K1, K2}+N+1)·8N−1) =
O(8N ·(N−1)).

It should be pointed out that the number of the blocks (Nb)
and that of the local qDCMPs (Nd ) in each block are usually
much smaller than the theoretical ones, i.e., Nb � N and
Nd � 8N−1, and a few numbers of qDCMPs of T would
be evaluated in fact during the calculation of the deficiency.
Therefore, the proposed algorithm would not cause severe
computational burdens.

4 Experiments

In this section, the performance of the HBBA will be evalu-
ated by experimental tests on three different types of hands,
including the hands with one color, two colors and three col-
ors. Specifically, to ensure the rationality of the following
evaluations, 1000 randomly generated hands are employed
for each type of hands, 50, 100 and 100 knowledge bases
are randomly generated based on a normal distribution for
the above hands with one color, two colors and three colors
respectively, and the true deficiencies of the tested hands are

obtained in advance. Besides, it should be noted that for each
tested hand T , its knowledge base K B is always legal, mean-
ing that the total number of any tile in T and K B does not
exceed four. Then the performance of the algorithm can be
effectively tested and evaluated. In detail, the specific infor-
mation of the tested hands and their knowledge bases can be
found in Table 5.

Moreover, in these experiments, the effectiveness of the
proposed methods is also analyzed, and three typical defi-
ciency algorithms are compared. To appropriately evaluate
the performance of the algorithm, the accuracy rate and
running time are used to measure their performance. All
experiments are implemented in Python 3.8 and executed
on a PC (Intel i7-6700 CPU and 16 GB RAM).

4.1 The effectiveness of the proposedmethods

In this subsection, we shall illustrate the effectiveness of the
proposed methods in HBBA, including the UKOS method,
the UKE method, the HBB method and the BD method.

4.1.1 The effectiveness of the UKOSmethod

To show the effectiveness of the UKOS method, we develop
two HBBA variants, HBBA1−1 and HBBA1−2, and compare
themwithHBBAon the above three types of hands. The vari-
ants are HBBA with the quadtree tree search method in Li
and Yan (2019) and the 6-ary tree search method in Yan et al.
(2021) to find all possible qDCMPs for each block, respec-
tively. Obviously, HBBA1−1 and HBBA1−2 can demonstrate
the benefits of the eight actions and the updated knowledge
base during the process of finding qDCMPs for one hand.
Thus, these two variants can effectively show the advantage
of the UKOS method.

In this experiment, the other operations in the two vari-
ants are consistent with that in HBBA. Table 6 reports their
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Table 5 The detailed
information of the used hands
and their knowledge bases

1-color hands 2-color hands 3-color hands

The number of used tiles 36 72 108

The maximal number of tiles in KB 22 58 94

The number of tested hands 1000 1000 1000

The number of test knowledge bases for each hand 50 100 100

Table 6 Experimental results of HBBA and HBBA1−1 and HBBA1−2 on different types of hands

Types Number of tiles in KB Number of hands HBBA1−1 HBBA1−2 HBBA
Accuracy Rate Accuracy Rate Accuracy Rate

1-color hands [0, 5) 7978 70.46% 70.56% 100%

[5, 10) 14997 98.94% 98.95% 100%

[10, 15) 15811 99.87% 99.87% 100%

[15, 22] 11214 99.98% 99.98% 100%

[0,22] 50000 94.92% 94.94% 100%

2-color hands [0, 10) 9917 60.65% 60.60% 100%

[10, 20) 18779 93.62% 94.47% 100%

[20, 30) 25117 98.57% 99.09% 100%

[30, 40) 23690 99.39% 99.74% 100%

[40, 50) 15849 99.83% 99.96% 100%

[50, 58] 6648 100% 100% 100%

[0,58] 100000 94.37% 94.76% 100%

3-color hands [0, 10) 4972 69.05% 68.04% 100%

[10, 20) 8091 79.37% 79.58% 100%

[20, 30) 11519 94.70% 95.03% 100%

[30, 40) 14446 97.89% 98.15% 100%

[40, 50) 15859 99.01% 99.18% 100%

[50, 60) 15150 99.50% 99.60% 100%

[60, 70) 12757 99.78% 99.82% 100%

[70, 80) 9388 99.90% 99.88% 100%

[80, 94] 7818 99.93% 99.93% 100%

[0,94] 100000 93.91% 94.00% 100%

experimental results on each type of hand, where for each
type of hand, the tested hands are further classified into vari-
ous groups according to the number of tiles in their KBs, and
the last row of each type provides the overall results on these
groups(the same below).

From Table 6, we see that the UKOS method can effec-
tively ensure the correctness of deficiency for a hand.
Specifically, for the hands with one color, HBBA1−1 and
HBBA1−2 always do not get all right deficiency in all groups,
and HBBA, HBBA1−1 and HBBA1−2 obtain 100%, 94.92%
and 94.94% in term of the overall accuracy rate, respec-
tively. Meanwhile, for the hands with two colors, HBBA1−1

and HBBA1−2 do not get all right deficiency in the first five
groups, and have all right deficiency in the last group. HBBA,
HBBA1−1 and HBBA1−2 obtain 100%, 94.37% and 94.76%
in terms of the overall accuracy rate in this case, respectively.

Moreover, for the hands with three colors, HBBA1−1 and
HBBA1−2 still do not get all right deficiency in all groups,
and HBBA, HBBA1−1 and HBBA1−2 obtain 100%, 93.91%
and 94.00% in term of the overall accuracy rate, respectively.
This could be attributed to the fact that the UKOS method
takes into account all possible cases during the generation
of qDCMPs by employing eight actions to construct the tree
and fully considering the knowledge base. Thus, the UKOS
method could be more effective to improve the correctness
of the algorithm.

4.1.2 The effectiveness of the UKEmethod

Moreover, to show the effectiveness of the UKEmethod, two
HBBA variants, HBBA2−1 and HBBA2−2 are designed and
compared with HBBA on the above three types of hands. The
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Table 7 Experimental results of HBBA and HBBA2−1 and HBBA2−2 on different types of hands

Types Number of tiles in KB Number of hands HBBA2−1 HBBA2−2 HBBA
Accuracy Rate Accuracy Rate Accuracy Rate

1-color hands [0, 5) 7978 64.78% 96.45% 100%

[5, 10) 14997 84.06% 99.99% 100%

[10, 15) 15811 81.46% 100% 100%

[15, 22] 11214 80.23% 100% 100%

[0,22] 50000 79.30% 99.43% 100%

2-color hands [0, 10) 9917 60.73% 77.85% 100%

[10, 20) 18779 93.68% 99.35% 100%

[20, 30) 25117 98.57% 100% 100%

[30, 40) 23690 99.43% 100% 100%

[40, 50) 15849 99.85% 100% 100%

[50, 58] 6648 100% 100% 100%

[0,58] 100000 94.40% 97.68% 100%

3-color hands [0, 10) 4972 69.05% 62.03% 100%

[10, 20) 8091 79.46% 86.21% 100%

[20, 30) 11519 94.71% 99.67% 100%

[30, 40) 14446 97.95% 100% 100%

[40, 50) 15859 99.02% 100% 100%

[50, 60) 15150 99.52% 100% 100%

[60, 70) 12757 99.77% 100% 100%

[70, 80) 9388 99.84% 100% 100%

[80, 94] 7818 99.93% 100% 100%

[0,94] 100000 93.92% 95.26% 100%

variants are HBBA with the evaluation method of qDCMP
in Li and Yan (2019) and the evaluation method of type in
Yan et al. (2021), respectively. Obviously, HBBA2−1 and
HBBA2−2 can effectively illustrate the benefit of making
full use of the knowledge base. Thus, these two variants
can effectively show the performance of the UKOS method.
Specifically, the other operations in the two variants are
consistentwith that inHBBA, andTable 7 reports their exper-
imental results on each type of hand.

From Table 7, we see that the UKE method can rightly
calculate the cost of each qDCMP. Specifically, for the hands
with one color, HBBA can correctly get the true deficiency
for all hands, while HBBA2−1 always does not get the true
deficiency in all groups and HBBA2−2 just can obtain all
right deficiency in the last two groups. Moreover, HBBA,
HBBA2−1 and HBBA2−2 obtain 100%, 79.30% and 99.43%
in terms of the overall accuracy rate for this case, respectively.
For the hands with two colors, HBBA and HBBA2−2 always
get all right deficiency in all cases except for HBBA2−2 on
the first two groups, and HBBA2−1 obtains all right defi-
ciency on the last group. Moreover, HBBA, HBBA2−1 and
HBBA2−2 obtain 100%, 94.40% and 97.68% in terms of the
overall accuracy rate for this kind of hands, respectively. For
the hands with three colors, HBBA and HBBA2−2 always

get all right deficiency in all cases except for HBBA2−2 on
the first three groups, and HBBA2−1 does not obtain all right
deficiency in all groups. Moreover, HBBA, HBBA2−1 and
HBBA2−2 obtain 100%, 93.92% and 95.26% in terms of the
overall accuracy rate for this kind of hands, respectively. The
reason for this might be that the UKEmethod fully considers
the informationof both thehandand its correspondingknowl-
edge base to evaluate each qDCMP, which could precisely
characterize the state of one hand. Thus, the UKE method
could effectively enhance the correctness of the algorithm.

4.1.3 The effectiveness of the HBB and BDmethod

Furthermore, to show the effectiveness ofHBBandBDmeth-
ods, we develop three HBBA variants, HBBA3−1, HBBA3−2

and HBBA3−3, and compare them with HBBA on the above
three types of hands. The variants are HBBA without the
BD method, HBB method and both of them, respectively.
Clearly, HBBA3−1 and HBBA3−2 can effectively show the
effects of the BD method and HBB method on the perfor-
mance of HBBA respectively, and HBBA3−3 can illustrate
the merits of HBBmethod and BDmethod. Thus, this exper-
iment can effectively show the advantage of both the HBB
method and the BD method. In particular, the other opera-
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Table 8 Experimental results of HBBA and HBBA3−1, HBBA3−2 and HBBA3−3 on different types of hands

Types Number of tiles Number of hands HBBA3−1 HBBA3−2 HBBA3−3 HBBA
in KB Running time(s) Running time(s) Running time(s) Running time(s)

1-color hands [0, 5) 7978 2.20 × 10−2 4.17 × 10−2 4.23 × 10−2 2.11 × 10−2

[5, 10) 14997 1.00 × 10−1 2.22 × 10−1 2.25 × 10−1 9.62 × 10−2

[10, 15) 15811 2.34 × 10−1 3.52 × 10−1 3.56 × 10−1 2.24 × 10−1

[15, 22] 11214 3.81 × 10−1 4.93 × 10−1 4.99 × 10−1 3.66 × 10−1

[0,22] 50000 1.93 × 10−1 2.95 × 10−1 2.99 × 10−1 9.26 × 10−2

2-color hands [0, 10) 9917 6.72 × 10−3 1.22 × 10−2 1.52 × 10−2 3.43 × 10−3

[10, 20) 18779 2.36 × 10−2 3.61 × 10−2 4.88 × 10−2 1.01 × 10−2

[20, 30) 25117 5.25 × 10−2 6.13 × 10−2 8.83 × 10−2 2.35 × 10−2

[30, 40) 23690 8.15 × 10−2 9.18 × 10−2 1.33 × 10−1 3.71 × 10−2

[40, 50) 15849 1.07 × 10−1 1.19 × 10−1 1.72 × 10−1 4.94 × 10−2

[50, 58] 6648 1.20 × 10−1 1.33 × 10−1 1.92 × 10−1 5.54 × 10−2

[0,58] 100000 6.26 × 10−2 7.28 × 10−2 1.04 × 10−1 2.84 × 10−2

3-color hands [0, 10) 4972 2.46 × 10−3 2.52 × 10−3 3.31 × 10−3 1.61 × 10−3

[10, 20) 8091 4.81 × 10−3 1.13 × 10−2 1.38 × 10−2 2.14 × 10−3

[20, 30) 11519 8.37 × 10−3 1.22 × 10−2 1.70 × 10−2 3.30 × 10−3

[30, 40) 14446 1.36 × 10−2 1.79 × 10−2 2.54 × 10−2 5.55 × 10−3

[40, 50) 15859 1.84 × 10−2 2.44 × 10−2 3.45 × 10−2 7.75 × 10−3

[50, 60) 15150 2.34 × 10−2 3.10 × 10−2 4.35 × 10−2 1.00 × 10−2

[60, 70) 12757 2.62 × 10−2 3.53 × 10−2 4.93 × 10−2 1.14 × 10−2

[70, 80) 9388 2.95 × 10−2 4.01 × 10−2 5.56 × 10−2 1.30 × 10−2

[80, 94] 7818 3.09 × 10−2 4.27 × 10−2 5.90 × 10−2 1.36 × 10−2

[0,94] 100000 1.84 × 10−2 2.52 × 10−2 3.51 × 10−2 7.92 × 10−3

tions in the three variants are consistent with that in HBBA,
and Table 8 reports their average running times on each type
of hand.

From Table 8, we see that both the HBB method and
BD method can effectively accelerate the search efficiency
of HBBA. Specially, for the hands with one color, HBBA
and HBBA3−3 always have the smallest and largest run-
ning time in all groups respectively, and HBBA, HBBA3−1,
HBBA3−2 andHBBA3−3 obtain 9.26×10−2s, 1.93×10−1s,
2.95 × 10−1s and 2.99 × 10−1s in term of the average run-
ning time for this kind of hands, respectively. Meanwhile, for
the hands with two colors, HBBA and HBBA3−3 also have
the smallest and largest running time in all groups respec-
tively, and HBBA has a better overall performance than its
three variants on all groups, especially for the last two cases.
Moreover, for the hands with three colors, HBBA still owns
the best computation efficiency in each group, and HBBA,
HBBA3−1, HBBA3−2 and HBBA3−3 obtain 7.92 × 10−3s,
1.84 × 10−2s, 2.52 × 10−2s and 3.51 × 10−2s in term of
the average running time for this kind of hands, respectively.
This might be attributed to the fact that the BD method can
effectively reduce the search scale during the construction of
the tree, and the HBB method can significantly degrade the

number of calculating the cost of qDCMPs during the pro-
cess of getting the deficiency for one hand. Thus, the HBB
method and BD method could be more effective to improve
the search efficiency of HBBA.

4.2 Comparisons and discussions

To illustrate the performance of HBBA, a comparison of
HBBA with three typical deficiency algorithms, including
QSA (Li and Yan 2019), WRA (Wang et al. 2020) and BDA
(Yan et al. 2021), is further conducted on the above three
types of hands. In particular, QSA (Li and Yan 2019) is an
original algorithm based on the quadtree tree search to calcu-
late the deficiency of one hand, where the knowledge base is
not considered to evaluate the qDCMPs. Meanwhile, WRA
(Wang et al. 2020) is a new approach to evaluate the quality
of one hand by constructing a weighted restarting automaton
over the tropical semiring. Moreover, BDA (Yan et al. 2021)
is an enhanced version of QSA, where a block decomposi-
tion technique is developed to reduce its search scale, and
the knowledge base is employed to calculate the cost of each
qDCMP’s type. Obviously, these three algorithms above are
the special methods to calculate the deficiency for a hand,
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Table 9 Experimental results of HBBA and three typical deficiency algorithms on different types of hands

Types Number of tiles Number of hands QSA BDA WRA HBBA
in KB Accuracy Rate Accuracy Rate Accuracy Rate Accuracy Rate

1-color hands [0, 5) 7978 70.58% 96.90% 43.07% 100%

[5, 10) 14997 99.50% 99.97% 49.67% 100%

[10, 15) 15811 99.97% 100% 45.41% 100%

[15, 22] 11214 99.98% 100% 43.45% 100%

[0,22] 50000 99.98% 99.50% 45.87% 100%

2-color hands [0, 10) 9917 32.80% 77.73% 24.47% 100%

[10, 20) 18779 80.22% 99.36% 43.14% 100%

[20, 30) 25117 92.85% 100% 34.20% 100%

[30, 40) 23690 97.34% 100% 29.47% 100%

[40, 50) 15849 99.24% 100% 27.04% 100%

[50, 58] 6648 99.89% 100% 25.77% 100%

[0,58] 100000 87.07% 97.67% 32.10% 100%

3-color hands [0, 10) 4972 7.12% 62.19% 6.48% 100%

[10, 20) 8091 41.23% 86.52% 39.76% 100%

[20, 30) 11519 62.74% 99.68% 48.39% 100%

[30, 40) 14446 75.85% 100% 46.71% 100%

[40, 50) 15859 83.20% 100% 43.99% 100%

[50, 60) 15150 87.88% 100% 41.70% 100%

[60, 70) 12757 89.64% 100% 40.29% 100%

[70, 80) 9388 91.28% 100% 38.51% 100%

[80, 94] 7818 92.32% 100% 38.84% 100%

[0,94] 100000 74.04% 96.99% 40.29% 100%

and they have the typical roles in the development of defi-
ciency calculation. So, they are all chosen as the compared
ones here. In detail, their experimental results on each type
of hand are listed in Table 9.

FromTable 9,we can see thatHBBAhas amore promising
performance than the compared ones. In particular, for the
hands with one color, HBBA always gets the true deficiency
in all groups, QSA and WRA do not get the true deficiency
in all cases, and BDA just obtains the true deficiency in the
last two groups. Meanwhile, for the hands with two colors,
HBBA and BDA always get the true deficiency in all groups
except for BDA in the first two groups, and QSA and WRA
do not get the true deficiency in all cases. Moreover, for the
hands with three colors, HBBA and BDA get the true defi-
ciency in all groups except for BDA in the first three groups,
and QSA and WRA still do not get the true deficiency in all
cases. Furthermore, one can also find that HBBA,QSA,BDA
andWRAobtain 100%, 99.98%, 99.50% and 45.87% for the
one-color hands, 100%, 87.07%, 97.67% and 32.10% for the
two-color hands, and 100%, 74.04%, 96.99% and 40.29%
for the three-color hands in term of the overall accuracy
rate, respectively. The reasons for these might be that HBBA
makes full use of and dynamically updates the knowledge
base for each qDCMP during the processes of both searching

theqDCMPs and evaluating their costs, whileQSA andWRA
do not employ the knowledge base to evaluate the quality of
each qDCMP, and the type of qDCMP is just used in BDA
to calculate the deficiency of one hand, and some possible
cases of generating the qDCMPs for one block can be for-
gotten. Thus, HBBA is a more promising algorithm for the
deficiency of one hand.

5 Conclusion

Due to its nature of imperfect state information, theMahjong
game has become one of the important experimental plat-
forms for researchers in the field of artificial intelligence (AI)
to explore new techniques, and has been widely considered
and studied. In the Mahjong AI system, the evaluation of the
quality for one hand (i.e. deficiency) always plays an impor-
tant role in the decision-making of the game player, such
as discarding tiles, pong, kong and so on. To do this, this
paper proposes an effective and efficient algorithm (HBBA)
to calculate the deficiency of one hand. In the proposed
algorithm, to ensure the correctness of the deficiency for
a hand, a UKOS method is developed to explore all pos-
sible quasi-decompositions, and a UKE method is designed
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to calculate the cost of each quasi-decomposition by making
full use of both the tiles used in the hand and its knowledge
base. Meanwhile, to accelerate the efficiency of getting the
deficiency, an HBB method is presented by layering all its
quasi-decompositions according to the number of their tiles.
Moreover, the block decomposition is further adopted in the
UKOS method to enhance its search efficiency. Compared
with the existing methods, HBBA considers all possible gen-
eration cases of quasi-decompositions, dynamically updates
and makes full use of the knowledge base for each quasi-
decomposition to evaluate its cost, and adopts a fastermethod
to get the deficiency for one hand. Thus, HBBA could not
only obtain a correct deficiency for each hand, but also own a
promising computation efficiency. Finally, the performance
of HBBA is evaluated and compared with three typical meth-
ods on three different kinds of hands. The experimental
results show its effectiveness and efficiency.

In our future work, we will utilize the proposed deficiency
algorithm to develop a more advanced Mahjong AI. Fur-
thermore, by combining machine learning or deep learning
techniques, a more simplified and promising method will be
designed for evaluating the quality of the Mahjong hand.
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