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Abstract—We propose a method for constructing artificial
intelligence (AI) player of mahjong, which is a multiplayer
imperfect information game. Since the size of the game tree
is huge, constructing an expert-level AI player of mahjong
is challenging. We define multiple Markov decision processes
(MDPs) as abstractions of mahjong to construct effective search
trees. We also introduce two methods of inferring state values of
the mahjong using these MDPs. We evaluated the effectiveness
of our method using gameplays vis-a-vis the current strongest
Al player.

Index Terms—Mahjong, Game Abstraction, Markov Decision
Process, Retrograde Analysis, Value Function.

I. INTRODUCTION

AHJONG is a popular game in Asia and has been

played over a hundred years with different rule sets
according to the country or region. Most rule sets of mahjong
share common properties that makes developing Al players
challenging, e.g., the number of players is three or four (mostly
four), size of the game tree is huge, size and number of
information sets are large, and uncertainty strongly influences
gameplay. Though the performance of Al players has exceeded
human experts in most two-player perfect information games
and some multiplayer imperfect information games, this has
not been the case for mahjong.

We propose a method of constructing an Al mahjong player
and demonstrate that its performance is better than current
Al players. We abstract the game of mahjong and treat it as
multiple Markov decision processes (MDPs). We considered
the averaged behavioral strategies of a variety of experts to
replace three of the four players with a chance player who
makes decisions based on static probabilities!. We introduce
four MDPs as abstractions of mahjong and formulate a value
functions by using these MDPs. The action probabilities of the
chance player acting on behalf of three players are inferred
from game records of experts and the authors’ experience. We
also verified the performance of greedy players who always
choose an action of the greatest value.

This paper is organized as follows. We explain the rules and
features of mahjong in Sec. II. We review related research
in Sec. III and explain the contributions of our research in
Sec. IV. We briefly outline our method in Sec. V and give
further details of it in Sec. VI. We discuss the performance
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evaluation of our method using gameplays vis-a-vis the exist-
ing current strongest Al player in Sec. VIL

This research is conducted to further develop the contents
of research on Al player of mahjong released at a domestic
conference [2], organized the theoretical framework of the
method, added a new computer experiment, and summarized
it newly.

II. BASIC KNOWLEDGE

A. Outline of MDP

MDPs have been widely used to model various sequential-
decision-making problems under uncertainty. While each
model represented as an MDP is quite simple, these models
encompass a wide range of applications [3]. An extensive-
form game of IV players can also be regarded as an MDP of
a player when the behavioral strategies of the other players
are announced in advance to the player. This subsection
provides the basic components of an MDP for satisfying
certain properties (i.e., finite sets of states and actions, discrete
time, finite horizon, terminal reward only, degenerate initial
distribution, and stationary deterministic policies). For the
sake of simplicity, the components are specialized to represent
MDPs introduced in this paper. Readers interested in a general
description of an MDP should consult the literature (e.g., see
the textbook [3]).

An MDP is described using time step, finite state set, finite
action set, probability that specifies one-step dynamics, and
terminal reward or payoff that specifies optimality criteria.
Time step 7 € {0,1,...} indexes the sequential decision-
making points or the terminal point. The decision maker
(hereafter, player) occupies a state s € .S at every time step 7.
The set S contains initial state si,; and can be divided into
a non-terminal state set .S, and terminal state set S.. The
player has to choose an action a € A(s) when the player is in
s € S. at T and occupies next state s’ € S with the conditional
probability P(s’|s,a) at 7 + 1. The player receives terminal
reward U(s) when he/she is in s € S.. The player is always
in sip at time step 0 and the one-step dynamics specified by
P(-|s,a) always brings the player from s;, to a terminal state
s € S, at 7 that does not exceed an upper bound of time step
Typ for any sequence of actions without letting the player
occupy the same state again.
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A policy or strategy of an MDP specifies the decision-
making rules of a player. Such a policy is a function 7 of a
state, satisfies 7(s) € A(s) for any s € S;, and determines
the probability P™(w) that the MDP generates a sample
sequence w = spapsiai - - s satisfying 0 < T < 7y,
Lo, STr—1 € Se, 870 € Se, and a; = W(Si)
(i=0,...,7" = 1). It also determines the expected terminal
reward V7 (s) when the player is in s € S.. The expected value
V™ (s) is regarded as an evaluation of policy 7 and optimal
policy 7* that satisfies V™ (s) = max, V" (s) for any s € S..
The action value Q™ (s, a) when the player chooses a € A(s)
in s € S, satisfies

Q"(s,a) = > _ U(sP(s|s,a)+ > V™(s)P(s/|s,a). (1)

s'€S. s'€S.

S0 = Sini> S1,-

When the player chooses a = 7(s) in s € S¢, Q™ (s,a) =
V™ (s) holds. We use the abbreviated superscript symbol “*”
instead of ”7*” as V*. We even omit these superscripts from
V' if the policy is not necessarily optimal.

This paper categorizes actions of mahjong and MDPs and
states of MDPs into several different types (see Appendix
for detailed descriptions). This paper assumes that the state
transition of an MDP according to probability P(:|s,a) is
made by a chance player.

B. Rules of Mahjong

There are variations in the rules of mahjong, but this section
outlines the most basic mahjong rules commonly used in Japan
(see [4]). Mahjong is a game played by four people who
use four sets of 34 tiles. These 34 tiles are different kinds,
and the total number of tiles is 136. Each player starts with
25,000 points. One gameplay of mahjong is a sequence of
multiple hands?, and the points move from player to player
by each hand. A standard method of earning points is to
form a winning hand earlier than the other players. A typical
wininning hand consists of four combinations of three tiles
satisfying specific conditions (each combination is called a
mentsu) and one pair of the same kind of tile. The final rank
of each player is determined by the final points of the game.

Figure 1 shows an overhead view of the tiles during a
gameplay and the three different locations of the tiles:

1) Each player’s hand is invisible to the others. Immedi-
ately to the right of the bottom player’s hand is the
tile (invisible to the others) obtained from the shuffled
drawing pile.

Part of the hand is disclosed by the left player. When a
player takes a tile discarded by another player, the player
discloses a mentsu containing the tile.

Each player’s tile row is visible and arranged in the order
of discard.

2)

3)

Next is a decision point at which the bottom player discards
one of the 14 tiles at location (1) to the second row of location
3).

In addition to the four players, we consider a chance player
who introduces contingency into the gameplay. The actions of
the chance player are classified into the following two types.

2A hand also means a set of tiles owned by a player
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Fig. 1. Overhead view during gameplay.

o« HANDDISTRIBUTION: The chance player distributes
hands from the draw pile to each player. Each player
receives a hand composed of 13 tiles, and one player
receives an additional tile as apgaw. This player is called
the parent player.

o DRAW: The chance player distributes one tile from the
draw pile to a player, which is not revealed to the other
players.

The information sets of each player are categorized into
two types (type I and type II). Any information set of type I
follows aganpDistriBUTION OF ADRAW- Lhe player dealt apgaw 1S
the player that chooses an action from one of the following
action types.

o« DRAWWIN: The player declares a win when his/her hand
(13 + 1 tiles) satisfies specific conditions. Then the player
discloses the hand and earns points depending on the
hand from the other players. All players then discard their
hands.

o DISCARD: The player discards a tile therefore, the size
of the hand is kept at 13. The tile is now revealed to the
others.

Type II follows apiscarp O GTake&Discarp (€Xplained below)
of a player ¢ who discarded a tile of kind h, where the
other players sometimes gain the right to choose one of the
following action types. Let j indicate a player who gained this
right.

o« TAKEWIN: Player j declares a win when his/her hand
(13 tiles) and ¢’s discarded tile of kind A (1 tile) satisfy
specific conditions. Then j earns points from 4, and all
players discard their hands.

e TAKE&DISCARD: Player j assembles a mentsu using
a discarded tile of kind h (take), discloses the mentsu,
then discards another tile. Take behaviors are classified
into a few classes such as pon (also known as pung)
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and chi (also known as chow) depending on the mentsus
assembled.

o PASsS: Player j does not declare anything. If all players
who gained the right pass, the next action is Ap,, of the
player next to <.

These action types form the bulk of branching points in the
hand. Each hand starts with aganpDistrRIBUTION, @nd the hand
ends when one of the players chooses an action in Ay (a
union of Aprawwin and Atakewin), or when the number of
tiles in the draw pile decreases to a specific number. Figure 2
illustrates some branches of the gameplay from apiscarp Of
player ¢ to apiscarp Of player ¢ + 1 (player ¢ = 5 means
i =1). A hand consists of about 60 of such parts.

i, aDISCARDl .
I+ 1 arakewin -
i +1, not arakewn

i + 2, dracewin -
i + 2, not rakewin

i+ 3' aTAKEWIN -

I+ 1’ a'F’ON&DISCARD ~

i + 3, Not Ayakewin
Washout

Not Washout

i+1,not apgN&DlSCARgP

I + 2, not aponepiscarn

I+ 2' aPON&DISCARD

I+ 3’ aPON&DISCARD

i +3, not Apongpiscaro]
i+1, Acy&DISCARD

i+1, Apraw .
i+1, ApRAWWIN

1 +1, 8piscarp

Fig. 2. Some branches of hand. White circles represent information sets in
which players choose actions. Black squares represent sets of endings of hand.
White square represents branch of washout determined by rules.

The rules specify whether the next hand starts or the entire
game ends when a hand ends. The chance player determines
one parent from four players for the first hand, and one parent
for each subsequent hand is specified by the rules. If the rule
called tonpu-match is applied, then a player usually plays four
to six hands in a gameplay, and the player usually plays one
or more hands as a parent.

We now describe several important terms in mahjong we
use in this paper.

o tenpai: When a hand (13 tiles) can become a winning

hand with an additional tile, the hand is called tenpai.

« shanten-number: The minimum number of tiles that need

to be exchanged to make the hand tenpai.

C. Features of Mahjong

Mahjong’s gameplay consists of playing multiple hands in
a row. The game situation before aganpDisTrRIBUTION CaN bE €X-
plained from only a small amount of shared information ¢nang

(points of four players etc.). Also, four behavior strategies and
the shared information determine the expected value of the
final ranking of each player. Since it is possible to represent
the game situation before aganppistriBuTion DY Phang and obtain
a sufficient number of expert’s record, the final ranking in this
game situation is easily predicted by regression. Therefore, it
is reasonable to represent a hand as a truncated partial game.
The game tree handles the end of the hand (i.e., the beginning
of the next hand) as terminal nodes to which the expected
values of the final rank are given. Similar methods of treating
the entire game as a continuous truncated partial game are
used in other games. For example, it is common to play one
game of n-point-match backgammon as an individual game
based on the reward of the match-equity table [S].

Let P(RANK(x,7)|¢nana) be the probability that event
RANK(z,1), ie., player @ acquires rank z for i,z €
{1,2,3,4}, occurs under the condition ¢pyq. Then the ex-
pected value of ¢’s payoff at ¢pang 1S given by

>

ze{1,2,3,4}

U}fand (¢hand) = P(RANK(IE, Z) |¢hand) Ugame (‘T) . (2)

Here, Ugame() is the payoff of rank x, which is defined by
the rules of the tournament (normally, the higher the rank, the
higher the payoff).

We roughly estimate the number of information sets (i.e.,
decision points) of a player in a truncated partial game of one
hand by ignoring actions in Agskpwiny and in Arakp&Discarp-
AmanoDistriBuTion Covers about 1011 ways to distribute hands
to a player. The number of legal actions in Apscarp 1S about
ten. After that, the player can see about 30 kinds of tiles at
each apscarp Of the other three players. Then, the player can
see about 30 kinds of tiles at apgaw. We call a partial gameplay
from discard to next draw of the same player a turn. Since the
number of turns to play one hand is about 20 at most, we
obtain a rough estimate by

10M x (30* x 10)2° ~ 10", A3)

The exponent value is a little smaller than that of the state
space in the game Go [6].
A hand falls into five scenarios from ¢’s point of view.

1) win: i chooses an action in Aw. Usually this is the
most favorable scenario.

2) lose: Another player chooses an action in Arskgwin
against a tile discarded by ¢. Usually this is the most
unfavorable scenario.

3) other win: Another player chooses an action in
Aprawwiny O in Aragpwiy against a tile discarded by
another player different from <. It is difficult for 7 to
control the emergence of this scenario as will.

4) tenpai washout: The hand ends due to a shortage in the
draw pile when ¢ has a tenpai hand.

5) noten washout: The hand ends due to a shortage in the
draw pile when ¢ does not have a tenpai hand.

We ignore other scenarios because they are rare. Choosing one
of these scenarios according to the current game situation is
one of the most important strategies for playing mahjong.

2475-1502 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

Authorized licensed use limited to: Auckland University of Technology. Downloaded on December 20,2020 at 08:54:35 UTC from IEEE Xplore. Restrictions apply.



This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TG.2020.3036471, IEEE

Transactions on Games

III. PREVIOUS RESEARCH

Due to research over the past 20 years, Al has exceeded hu-
man ability in many two-player zero-sum games with perfect
information, e.g., backgammon [7], checkers [8], chess [9],
shogi [10], [11], and Go [12]. One of the techniques that has
played a central role in the development of these Al players
is heuristic search using the property that two players share
symmetric information [13]. However, heuristic search has
not been powerful in games with three or more players and
imperfect information. The reason for this is that it is difficult
to construct a search tree that is easy to finish searching and
effective for representing proper game situations.

There are also interesting research results from two-player
games with imperfect information. Counterfactual regret mini-
mization (CFR) is a powerful technique based on self-play for
constructing a strong player of a game belonging to such a
class [14]. In fact, e-Nash equilibrium of heads-up limit Texas
hold’em, which has about 10'4 decision points for a player,
was obtained using CFR™, a variant of CFR [15]. Moreover,
an expert-level Al player of heads-up no-limit Texas hold’em,
which has more than 10*%° decision points, has been developed
using tree search with bet abstraction and deep learning of
counterfactual values [16]. In research other than on poker
Al, an expert-level Al of Scrabble has been developed using a
selective move generator, simulations of likely game scenarios,
and the heuristic search algorithm B*[17].

Relatively few studies have been reported on multiplayer
imperfect-information games such as mahjong. Even in such
games, one of the research objectives may also be to compute
approximations to some of the Nash equilibrium points. A case
study on limit Texas hold’em with three players was conducted
[18] in which an AI player based on CFR outperformed
other Al players, although this method loses the theoretical
guarantees of two-player zero-sum games. However, applying
CFR variants to other multiplayer games is not easy. Im-
plementation of a mahjong player based on CFR is difficult
because the size of the game tree is too large to search, and
the abstraction for reducing the search space is unknown.

Another research objective in multiplayer imperfect-
information games is to construct an Al player by using
heuristic methods, which are known to be effective in two-
player perfect-information games. There are Al players in
multiplayer Texas hold’em. Poki, which is an Al player of
Texas hold’em involving multiple players, adopts a betting
strategy based on heuristic evaluation of hand strength [19].
Commercial software called Snowie is considered to have the
same strength as experts, but its algorithm is unpublished.

Besides poker games, an expert-level Al player of Skat
has been constructed based on heuristic search algorithms
of perfect-information games. Search algorithms have been
used in the game using game-state inference and static eval-
vation obtained by regression using game records [20]. It
is interesting to build AI players based on such heuristic
search algorithms in other multiplayer games and imperfect
information, but it is difficult to construct an effective search
tree. In fact, it has been reported that an Al player of The
Settlers of Catan applying Monte-Carlo tree-search methods

is not as strong as human players [21].

There has been research on Al players of mahjong. There
is an open-source beginner-level player based on the Monte-
Carlo simulation called manue?. To model actions of opponent
players statically, it uses inferred probabilities that an action
in Apscarps (@ union of Apscarp and ArakeaDiscarps) by a
player induces a win of another player. Bakuuchi is another
player that carries out Monte-Carlo simulations. Early Baku-
uchi uses such probabilities with higher accuracy, Eq. (2), to
evaluate each simulation at the end of the hand and simulation
policies learned from game records [22]. In that study, they
reported that point dependency on the policy is inappropriate
and had reached only the intermediate level. Note that a recent
Bakuuchi, which is unpublished, has reached the advanced
level. Bakuuchi is the first Al player that achieved 7 dan in
tenhou. It highest dan achieved is 9 dan, and it is stronger than
a majority of human players. To the best of our knowledge,
no tree has yet been discovered to search for better decisions.

Our method abstracts mahjong to construct effective search
trees to appropriately handle various game situations. Game
abstraction is known as an effective means of reducing a
huge search space of an extensive-form game with imperfect
information [23]. For example, the effectiveness of information
and action abstraction is shown in the aforementioned poker
and patrolling security games [24].

IV. CONTRIBUTIONS

The contributions of this paper are as follows.

(1) We define an abstraction of mahjong, Inclusive Policy
Solitary Mahjong M, which is an MDP that is expected to be
effective to evaluate short-term behavior strategies to compete
on the most favorable scenario win. Three other players are
replaced with a static environment, and the decision-making
player goes through the process of M and ends with a win,
lose, other win, tenpai washout, or noten washout scenario.

(2) We introduce several features in machine learning
that are expected to be representative of long-term behavior
strategies of a hand and be useful for inferring state values.
The features are computed using three other MDPs. Three
other players are replaced with a static environment, and the
decision-making player goes through each process and ends
with a few specific scenarios.

(3) We propose a method for constructing an Al player
using (1) and (2). We present the experimental results of 3557
gameplays with a state-of-the-art AI mahjong player in which
our Al player achieved a significantly higher average rank.
We also present that our player makes each decision in a few
seconds using a realistic computational resource.

V. OUTLINE OF PROPOSED METHOD

We discuss the action values of mahjong by separating the
cases in which a hand ends immediately. Let us consider the
first few actions from information set uy. Recall that most
actions belong to three types, WIN, DISCARDS, and PASS.

3Hiroshi Ichikawa https:/github.com/gimite/mjai-manue
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We first consider action type WIN. After such an action, a,
a hand ends without any action of the other players. When
player ¢ at ug takes a, the action value is

Q¥ (10, @) = Upyq(Phand)- 4)
The superscript ‘org’ means original game of mahjong.
We compute  Uf,i(¢hama) using Eq. (2), where

P(RANK(z,%)|@nana) is inferred using a multi-class logistic
regression model, as in a previous study [22].

Next, we consider action type DISCARDS. Such an action,
a, is accompanied by discarding a tile, and the hand also ends
immediately if another player chooses arakgwin against the
tile. Let us assume that the other players determine actions
according to static probability and treat them as if they are
also the chance player. When 7 at ug takes a, we approximate
the action value as

Q" (uo, a)

Q

P(TAKEWIN from i|ug, a)

UTAKEWIN from i(UOa a)
P(TAKEWIN from i|ug, a)

X + X

Usakewin from 7 (40> @).-

®)

The probability P(TAKEWIN from i|ug, a) and corresponding
expected payoff Uraxewin from (U0, @) can be inferred using
orthodox machine learning methods because a hand immedi-
ately terminates if a is followed by the ataxgwin Of another
player. We discuss these methods in Sec. VI-C.

We then consider action type PASS, i.e., a € Ap,ss. When
1 at ug takes such a, we approximate the action value as

Qorg(uoa a) ~ Upass (UO, a). (6)

The value Up,ss(uo, a) is the corresponding expected payoff.

After separating the cases of immediate ends of a hand,
we need to compute Ugewin from 7 (U0, @) and Upyss(uo, a) to
estimate the action value at ug. Our method uses two models to
compute these values. In both models, three other players are
considered as a chance player. These models treat the abstract
game state s, which is an approximate expression of an ’s
information set that will be realized after (ug, a), as tuple s =
(ug, g, h,c,t). Here, q represents a future hand envisioned at
ug of 7, h is a kind of tile that 7 will encounter in the future, ¢
is a type of state described below, and ¢ is the number of tiles
discarded by 7 since wug. The tile of type h is one of the most
important judgment factors when a mahjong player makes a
decision. When game state s is an abstract representation of
an information set of type I (see Sec. II-B), the tile is the
one distributed by the chance player just before making the
decision. On the other hand, when s is that of type II, the
tile is the one discarded by another player just before making
the decision. In this way, these models explicitly keep track
of ¢’s hand and one most recently raised tile, and any other
features in the game situation (ug, a) are assumed to be almost
unchanged. We omit ug of s in Sec. VI-A and VI-B because
it is constant and appears too many times.

To set up the first model, in addition to using the state
representation, we define inclusive policy one-player mahjong

M, which is an MDP and takes into account as many scenarios
as possible. This MDP requires comprehensive search and
designed to predict a hand’s ending with a relatively small
number of steps with high accuracy.

To set up the second model, in addition to using the state
representation, we define several one-player-mahjong games,
which are different MDPs, and take into account different
small subsets of all scenarios. The estimation of action values
by one of these one-player mahjong games is not accurate
because each subset is restricted. However, these one-player-
mahjong games are amenable to long-term computation and
can be used to provide good features to predict the scenario
of hands with a relatively large number of steps.

VI. PROPOSED METHOD

This chapter is organized as follows. In Sec. VI-A, we define
multiple MDPs as mahjong abstractions and formulate their
action-value functions. We then represent the action values
of game situation by means of these MDPs in Sec. VI-B.
In Sec. VI-C, we describe methods of calculating probability,
payoff, and other parameters of the MDPs. The probability
and payoff functions are summarized in the Appendix. In
Sec. VI-D, we describe an efficient search algorithm of the
MDPs.

A. Abstraction to MDPs

Consider player ¢ at information set ug of a hand, which
is a truncated partial game of mahjong. We abstract the hand
rooted at ug to an MDP in four ways. Here, 7 is the agent
who makes decisions, and decision making of the others are
represented by transitions probabilities of states. This section
defines four MDPs and formulas that approximately represent
the expected value of ¢’s payoff.

1) Inclusive Policy Solitary Mahjong M: MDP M covers
various scenarios from i’s point of view. The flow of M is
schematically shown in Fig. 3. Type c of state s in M indicates
one of the following:

o Discard: Player ¢ at s of this type can choose aprawwin
to gain payoff Uppnwwin(q,h) only if ¢ and h satisfy
conditions used in the mahjong rule sets as if ¢ and h
respectively were a hand (13 tiles) and a kind of tile
obtained from the drawing pile. If 7 does not, then ¢ has
to choose an action in Apscarp to discard a tile from gq,
or discard a tile of kind h.

o Take: Player 7 at s of this type can choose arakewin
to gain payoff Uryewin(q, h) or an action in AryegDiscard
only if ¢ and h satisfy conditions used in the mahjong
rule sets as if ¢ and h respectively were a hand (13 tiles)
and a kind of tile discarded by the other players. If 7 does
not, then ¢ chooses apyss.

e Fold: Player ¢ at s of this type chooses either agop Or
aNorFoLp- If © chooses aporp, @ gains payoff Ugga(g,t).

Discard and Take respectively correspond to i’s information
sets following apraw Of the chance player and apiscarp Of
the other players in mahjong. Though an information set
corresponding to Fold does not exist in mahjong, we introduce
this type of state for simplification.
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MDP M terminates immediately if ¢ chooses -either
ADRAWWINs OTAKEWIN, O @porp. Otherwise, the chance player
chooses actions, which are categorized as follows.

o LOSE: M terminates at probability P(aLose|q, b, t) after
7’s action of Apscarps, Where b is a kind of tile discarded
by the action and ¢ gains payoff Upes(h). If M does
not terminate, ¢ increases by one. Then M terminates
if t =T, and ¢ gains payoff Uwashou(¢). Otherwise, the
state transfers to a state of Fold (7" is a parameter of M,
which is described in Sec. VI-C).

e OTHERWIN: M terminates at probability
P(aormnerwin|q, t) after ¢ chooses anorroLp and gains
payoff Uomerwin. Otherwise, the chance player chooses
an action in AoryerDiscarp-

e OTHERDISCARD: The chance player chooses a tile of
kind h at probability Pr(h|q) and the state transfers to a
state of Take.

e DRAW: The chance player deals a tile of kind h at
probability Pp(h|q) as if h were served from the shuffled
drawn pile after ¢ chooses ap,ss at a state of Take, and
the state transfers to a state of Discard.

arose and aorgerwin respectively result in a transition to a
terminal state corresponding to lose and other win scenarios
in the mahjong, whereas aprawwin and araggwin result in a
transition to a terminal state corresponding to a win scenario.
The agoLp results in a transition to a terminal state that deals
with lose and other win scenarios using Mg, as described
below.
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Fig. 3. Some branches of M. White circles represent states in which player
% chooses actions. Black circles are also branching points, neither of which
is decision point of player . Black squares represent sets of endings of M.
White square represents branch of washout determined by rules.

When the ¢ of s is Discard, i.e., s = (¢, h,Discard, t) and
h corresponds to a kind of tile obtained from the drawing pile,
the action-value function is as follows. For (g, h) satisfying
the conditions to choose aprawwin, We have Q(S, aprawwin) =
Ubrawwin (¢, h). MDP M terminates with this action. For action
a in Apiscarp, We have a tile of kind &’ to be discarded through
a, a new hand ¢’ after discarding a tile of kind 4’ from ¢ or

the tile obtained from the drawing pile of kind h, and

Q(S’ CL) - P(aLOSE|q/a h/, ﬁ)ULose(h/)

+  P(aroseld, I, 1) Vigse(d', I st + 1).
V (st t41<T

Vieo(q', Bt +1) = (sr) / +1< o
UWashoul(q ) t+1=T

Here, s = (¢/,null,Fold, ¢t + 1).
When the ¢ of s is Fold, i.e., s = (¢,null,Fold,t), and
the action is anorroLp, W€ have

Q(S» aNOTFOLD) = P(aOTHERWlN |q, t)UOtherWin

+ P(aOTHERWIN|qa t) Z PT(h|Q)V(3T)a
heH

®)

where st = (¢, h,Take,t), h is the kind of tile that is
analogous to the other players’ discard in mahjong, and H
is the set of all tile kinds.

When the ¢ is Take, i.e., s = (g, h,Take,t), the action-
value function is as follows. For (g, h) satisfying the condition
to choose arskewin, We have Q(é’, aTAKEWIN) = UakeWin ((L h)
MDP M terminates with this action. For action ap,gs, we have

Qs,apss) = D Po(W'g)V(sp), ©)
WeH
where s, = (¢, h/,Discard, t). For action @ in Ataxeg&Discarps
we have

Q(s,a) - P(aLOSE|q/ah/at)ULose(h/)
+ P(aLOSE|q/7h’/7t)vi(q/7h,7t+ 1)7 (10)

Lose

where h' is a kind of tile discarded through a. The formulas
of payoff functions are outlined in Sec. VI-C.

2) Folding Solitary Mahjong (Myyq): MDP Miqq covers
two scenarios (lose and other win) to represent the folding
strategies of 7. Folding is a behavior strategy in which ¢
abandons the most favorable win scenario and avoids the most
unfavorable lose scenario of the current hand. All Actions of
DRAW and DISCARDS of the other players are ignored to
simplify the game.

In Mg, under the probability of lose P s (h) and payoff
of lose Upose(h), @ is only allowed to discard h from ¢’s hand.
The action type of ¢ is only DISCARD, any state in Mgy is of
type Discard, and the number of tiles in 4’s hand decreases
monotonically from the initial state because actions of DRAW
are ignored. There are two types of actions of the chance
player, which represents an average expert player, as follows.

e LOSE: Mggq terminates with probability P o5 (h), where

h is the kind of tile discarded just before, and ¢ gains
payoff Upse(h). If 4 discarded tiles of the kind h more
than once from the initial state, this type is not selected.

o OTHERWIN: When M,y does not terminate by apose,

it terminates with constant probability a (we tentatively
set a = 0.1), and ¢ gains payoff Upmerwin. Otherwise, the
state transfers to another state of type Discard.
MDP Mjsyq also terminates when ¢ discards all or T34 tiles
and 7 gains payoff Upmerwin- For the sake of simplicity, we
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assume a natural condition Upse(h) < Uotherwin holds for all
h. Under this assumption, if ¢ has tiles of a certain kind that
have been discarded once or more, ¢ should always discard
one of these tiles.

Let ¢ be 7’s hand, h be the kind of tile to discard, and
t be the number of discards from the initial state. Action-
value functions are formulated in terms of s = (g,¢) without
specifying both c¢ (the constant state type Discard), and h
(always the kind discarded through an action in Apscarp)-
When action a is an action that discards h, we have

Qnew(q, t,a) if a discards a new kind h
Qg,t,a) = ,
Qprev(q,t,a) otherwise
QneW(Qat7a’) = PLose( )ULO§ (h)
)Uotherwin

+ +

(1 - PLose( )
(1 = Puose(h))aV(q',t +1)

Qprev(q; tv CL) aUOtherWin + OZV((]/, t+ 1)

Here, @ = 1 — o, and ¢’ is a hand where one of tiles of kind
h is subtracted from gq.
The optimal policy is to discard the tiles in ascending order

of f(h), ie
f(h)

PLose(h)(UOtherWin - ULose(h))

1— (1= Prose(h))amn 7’
where ny, is the number of tiles of kind A in ¢’s hand in the
initial state, and the optimal value Ergq = V*(sii) is given
by

12)

PLose(hl)ULose(hl)
( - PLose(hl)) [1 - dnhl] UOtherWin
(]- - PLose(hl)) Tty PLose(hQ)ULose(hZ)

Eroig
+
+
_|_
Jr

K
[H(l - PLose(hk)) C_Vzk T UOtherWin- (13)

k=1

Here, hy (k= 1,---,K) is in ascending order of Eq. (12),
and K is the number of tile kinds in 4’s hand in the initial
state. The optimal policy ends up with the scenario lose with
the probability

+

P Lose (h 1 )
(1 PLOQe(hl)) 1PLo<e(h2)
Let UpLoseAverage b€ the optimal value under the condition of lose

termination, which is discussed in Sec. VI-B. Equation (13)
can be transformed using Uposeaverage as follows

PFoldLose
. (14)

Ekoiq

+

B FoldLose ULoseAverage

(1 - PFoldLose) UOtherWin . ( 15)

3) Winning Solitary Mahjong (M.,,,) and Tenpai Solitary
Mahjong (M enpai): MDPs Myin and Menpai are specialized
for representing win and tenpai strategies, respectively. Both
are expected to have a smaller search space than M. Terminal
states that do not have direct relations to the purpose of win for
Min or tenpai for Menp,; are ignored. Specifically, terminal
states induced by aposg, Gpop, and aoruerwin are removed

(11

7

from M in both MDPs. Moreover, the payoff of washout
Uwashout(q) in My, does not depend on ¢, which we write as
UNotwin- Also, player ¢ of Mepp,i 18 unable to take an action in
Awin. We omit formulas of action values, but they are derived
by replacing zero with probabilities corresponding to those
actions.

B. Value Inference Using Multiple MDPs

In this section, we introduce two methods of inferring values
of legal actions of mahjong using multiple MDPs introduced
in the previous section. The first method simply adopts the
optimal value V* of M to calculate the approximate values
in Egs. (5) and (6) as

V*(g,null,Fold, 1)
V*(g,null,Fold, 0)

Utarewin from 7( 40, @)

Upass (u07 a)

where v is player 4’s information set and ¢ is ¢’s hand after
action a. Note that parameter ¢ indicates the number of tiles
player ¢ discarded from #’s information set wy.

The second method uses the results of optimal-policy eval-
uations using Muyin, Mienpai> and Myoq. Let Z be a set of
hand scenarios {win, lose, other, tenpai, noten}. This method
calculates the approximate values in Eqs. (5) and (6) as

(16)

UTakeWm from z(uo’ CL) = V(Q? 1)
UPass(UOa a = V(q, O)
Vigt) = Y Plgt2)U(gt2) (7)
z2€Z

We calculate P(q,t,z) in Eq. (17) using the product of
probabilities Pyin, Pwashouts Prenpai> and Piose (see Table I) as

P(q,t,win) = pwin(g,t)
P(g,t,tenpai) = pg(q, t)PwashoutDrenpai (4, t)
P(g,t,noten) = pg(q, t)PwashouPigmpz (45 t)
P(g,t,lose) = puin(q, t)PymnontPlose (45 1)
P(g,t,other) = poi(q, O)Pysponlioe(@> 1)  (18)

These probabilities are inferred by logistic regression using
features that are the results obtained from optimal-policy
evaluations of these MDPs and game records (see Sec. VI-C
for more detail). To explain their features, let us introduce
the following symbols: Viin(q,t) and Pyin(g,t) are results
obtained from optimal-policy evaluation of My,,, where the
former is an optimal state value of (g, null,Fold,t) and the
latter is the probability that ¢ in this state finally chooses
an action in Awins; Plenpai(g;t) is the probability that ¢ in
(¢,null,Fold, t) of Mienpai Will have a tenpai hand when it
terminates under an optimal policy; and Prowrose(¢,t) and
ULoseAverage (¢, t) are values from Egs. (14) and (15), where
the initial hand of Mjy,q is ¢ and T is adjusted according to
t. The features used for the regressions are as follows.

L4 pwin(Qa )

- logit(Puin(g,1))
— The number of players declaring riich (riich is dis-
cussed in Sec. VI-E).
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- 1-J[;(1- pf;npai). Here, j runs over all players who
are not ¢ and do not declare riich.
® Pwashout-
— The number of players declaring riich.
— 1—[T;(1 = P{enpai)- Here, j runs over all players who
are not ¢ and do not declare riich.
. ptenpai(%t):
- logit(ljtenpai(q,t))
— The number of players declaring riich.
° plose(‘Lt):
— logit(Prose(q, 1))
— The number of actions in Arue&Discard ¢ has chosen
, since AHanpDIsTRIBUTION-
Here, pfenpai is an inferred probability that player j is tenpai
at ug (see Sec. VI-C for more detail).

TABLE I
Probabilities in Eq. (18).

Symbol
Pwin (q7 t, uO)

Description

Probability that the hand ends with player ¢’s win
scenario under the condition that the information set
is ug of player 4, ¢’s hand is ¢, and % discards ¢ tiles
from wug.

Probability that the hand ends with washout scenario
under the condition that the information set is ug of
¢ and ¢ does not win the hand.

Probability that the hand ends with tenpai washout
under the condition that the information set is ug of
i, the hand ends with washout, 7 has hand ¢, and
discards ¢ tiles from ug.

Probability that the hand ends up with ¢’s lose
scenario under the condition that the information set
is ug of ¢, ¢’s hand is g, ¢ discards ¢ tiles from wug,
4 does not win the hand, and the hand does not end
with washout.

Pwashout (UO )

Dtenpai (Q7 t, uO)

plnse(% t7 uO)

We calculate U(q, t, z) in Eq. (17) as

Vwin(‘]a t) - (]— - Pwin(qv t))UNolWin
Pwin(Qa t)
ULoseAverage(q7 t)

U(q,t, win

)
U(q,t,lose) =
U(q,t,other)

= UotherWin- (19)

We calculate U (q, ¢, tenpai) and U (q, ¢, noten) on the basis of
mahjong rules and tenpai probability pfenpai of the other players

J# i

C. Parameters and Probabilities Used in MDPs

This section briefly describes methods for determining pa-
rameters and probabilities used in the MDPs. These methods
include other heuristics that are not explained in this section.
Readers interested in a more detailed description should con-
sult our domestic conference paper [2], technical report [25],
and program codes hosted in GitHub®.

We first explain the collection of game records we used to
obtain empirical probability distribution of gameplays gener-
ated by expert players. Tenhou® is a famous Japanese online
mahjong website. There, players are ranked by the dan system,

“https://github.com/critter-mj/akochan
Shttp://tenhou.net/

where players with better game results get higher dan. Games
played on Tenho fall into four main groups. Only players
holding 7-dan or higher (about 1% of active players) can
participate in the highest-level group of highest level. Game
records of this highest group are available online and used
for adjusting parameters such as weights used by logistic
regression.

Let the decision maker of these MDPs be player 4, and i’s
current information set of mahjong be wug as before. The first
parameter to be described is 7. Let T,x be the maximum
number of ’s future actions in Ap;scarps Until the current
hand ends assuming that no player will choose actions in
Atake&Discarn- We set T' to Trax for M. For the other MDPs,
we set T 10 [TinaxOratio |- We determine ratio o, on the basis
of logistic regression using the same features as those used for
Pwashout and label Tieasured / Thnax» where Theqsured 1S the number
of future actions in Apscarps Until the current hand ends. The
training data (a set of feature and label pairs) are sampled from
the recorded information sets of players who did not win at
the corresponding hands.

The next parameters to be described are those used to infer
probabilities related to the lose scenario. Some probabilities,
such as P(TAKEWIN from é|ug,a) in Eq. (5), can be deter-
mined by P(j TAKEWIN from %, ¢nana|h, t, ug), i.e., the joint
probability that another player j chooses araxgwiy When ¢
discards a tile of kind h by a after ¢ actions in Apscarps
from ug and the hand ends immediately with game situation
$nana- We abbreviate the probability as P (¢nand|hs t, uo).
Because j’s hand must be tenpai when j chooses arakewin,
the probability can be factorized as

Pﬂose(¢hand|h, t, Uo)
= P(j TAKEWIN from %, ¢nana|h, t, ug, j is tenpai)

x  P(j is tenpailh, t, up). (20)

We infer the conditional probability
P(j TAKEWIN from 4, nhana|h,t,uo,J is tenpai) in two
different ways. When j has chosen no action in Arsxg&Discarp
since AganoDistrisution, it 18 inferred in such a way as to
further factorize the probability and draw histograms in terms
of scores of TAKEWIN from game records. When j has
chosen one or more actions in Atake&Discarn, it is inferred in
such a way as to enumerate all possible tenpai hands for j.
When a player has chosen actions in AragegDiscarp tWice, the
number of possible tenpai hands is in the of 100 thousands,
and enumerating all of them does not significantly affect the
total calculation time. When the number of such actions that
7 has chosen is one, it is not realistic to enumerate all tenpai
hands. However, it is possible to enumerate the remaining
seven tiles by ignoring one mentsu.

We also infer the conditional probability
P(j is tenpailh, t, ug) by assuming it satisfies
P(j is tenpai|h, t,ug) = P(j is tenpailt,up) and using
logistic regression similar to that in a previous study [22],
but the major difference is that the regression model is
fitted for each number of j’s past actions in ATske&Discarp
and for each number of j’s past actions in Apscarps from
We verified that this probability

AHanpDistriBUTION 1O Ug.
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rarely depends on h. We abbreviate the probability as
Plopai(ts to). This is also used for py, .(uo) in Sec. VI-B,
where ¢ is set to that of sjy;.

The remaining probabilities are as follows. Probabilities that
the chance players of MDPs choose an action a € Apgaw
or AoruerDiscarp according to static probability, which are
proportional to the number of 4’s invisible tiles of the kind
h. That is,

h
Po(hla,uo) = Pr(hla, ug) = U4 10) @1)

>nm(h,q,u0)’
where m(h, g, ug) is the number obtained by assuming that 7 is
in a virtual situation where he/she has exchanged the minimum
number of tiles unilaterally and continuously to realize hand ¢
from wug. The probability that the chance player chooses ay osg
is inferred by assuming it satisfies

P(QLOSE|Qa hvtauo) = Z Pﬁose(¢hand|hatau0)~

JsPhand

(22)

This is also used for P s (h|ug) of Mgoq, Where ¢ is set to
that of sj,;. The probability that the chance player chooses
AOTHERWINS 1-€-5 P(@oruErwin|g, I, T, o), is inferred by assum-
ing it satisfies P(aOTHERWIN |q, h,t, UQ) = P(aoTHERWIN|t, ’U,o)
and using logistic regression, where the number of other
players declaring riich and estimated tenpai probabilities of the
other players at u( are used as features. Recorded information
sets of players who did not win or lose at the corresponding
hands are used, and the probability that the other players
declare win is learned for each t. We verified that this
probability rarely depends on h.

We adjust parameters to represent payoff functions as fol-
lows. Let us assume that ¢prawwin (g, 1, uo) is shared informa-
tion ¢nang that represents an immediate end of the current hand
by 4’s action apgawwin at in a virtual situation. The virtual
situation is 4’s information set ug but hand ¢ is substituted for
i’s hand, and h is a kind of the tile obtained from the drawing
pile by aprawwin- Then éprawwin(q, 2, ug) is determined in
accordance with the rule sets and provides the definition of
payoff function Upyawwin(g, k) as

UDrawWin(Q7 h» UO) = U}fand(¢DrawWin(Q7 h7 uO)) (23)

using Eq. (2). In the same way, we assume that
OTakewin(q, P, U0, J) 1S Phana that represents an immediate end
by i’s action arakgwiy from player j # i at the virtual
situation, where h is a kind of the tile presented by a chance
player as if it were j’s discarding action @ € Apiscarps-
Then ¢rukewin(q, h, uo) is determined in accordance with
the rule sets and provides the definition of payoff function
UTakeWin(Qa hﬂm) as

1 . )
Utakewin(¢; h, o) = 3 > Ul (Srakewin(q: 1 0, 5)). - (24)
J

We define payoff function Uy ose(h, t, ug) by omitting obvious
uo dependency as

Zj7¢hund Pﬂ-OSC (¢hand | h, t) Uliand (d)hand)
Zjv¢hund Pﬂose (Qbhandvl7 t)

ULOSS(h‘7 t) = (25)

Let us assume that dwashout(%0,d) be Ghana that represents a
future washout of 1y and determined by whether each player’s
future hand is tenpai. Here, b = (b1, ...,b4) is a tuple of four
Booleans (b; is true only when player j is tenpai). Then ¢ is ¢’s
future hand from wg, B(q) is a set of all possible b (note that
b; always indicates whether ¢ is tenpai), and payoff function
Uwashout (¢, uo) is defined as

UWaShOUt(Q7 UO) =

Z [Ulfand (¢Washoul(u0a b))

beB(q)

[T (o, b))
i

pfenpai(T7 U‘O)

1 — 9’ (ug, true).

P’ (ug, true)

P (ug, false) = (26)

Payoff function Ugog(q,t) is defined using Eq. (13), as
Urola(q,t) = Eroa- To calculate Egqq, the optimal policy of
Mo is evaluated using siy = (¢,t = 0) and Tiq = T — t.
Payoff function Uomerwin(uo) is defined by omitting obvious
uo dependency as

- )
Zj7k7h7¢hand P\]Vin (¢hand ‘ h) U}fand (d)hand)
ik
Zj7k7ha¢hand P\‘ZVIH (('bha“d | h)

Uotherwin

(27
where both indexes j and & run for all players who are not 1,
P\]}lvkin(thand‘h, UO)
= P(j TAKEWIN from k, ¢nana

|k DISCARDS h after ug, j is tenpai)
X P(j is tenpai|k DISCARDS h after ug).

for j # k, and
P\g\;in(¢hand|ha UO)
= P(j DRAWWIN, ¢pand|j DRAW h after ug, j is tenpai)
(29)

(28)

X

P(j is tenpai|j DRAW h after ug).

These probabilities are inferred as in Eq. (20).

D. Outline of Search Algorithm of MDPs

Our search algorithm to compute the expected final rank of
a player at an information set has computational complexity
proportional to the number of states of M. Even ignoring
actions in artaks&piscarn, there are about 10'! patterns of a
player’s hand, and it is not realistic to search all states related
to each hand. It is therefore desirable to reduce a sufficient
number of states and actions of M so that the search algorithm
ends with a realistic computational resource and the error of
expected final rank does not increase.

For such reductions, we focus on states and actions related
only to hands that can realize tenpai with a relatively small
number of tile exchanges. We construct a set of such hands in
the following four steps: (1) consider a graph in which a vertex
represents a hand, an edge represents a tile exchange, and it
takes into account all possible hands and tile exchanges, (2)
enumerate paths with length n or less connecting the current
hand ¢¢ and tenpai hand, (3) construct the set of hands Qso(n)
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by enumerating vertices along all the paths including two
terminals (i.e., go and a tenpai hand), and (4) construct the set
of hands Qs(n, m) consisting of all ¢ satisfying the condition
that ¢’ in Qso(n) exists such that m or fewer mentsus of ¢ are
revealed by taking from gq.

Two integers n and m are parameters that control the size
of the search space. Parameter n must be greater than or
equal to the shanten-number of ¢y because the space must
have some tenpai hands. As n and m are larger, the final rank
prediction is expected to be more accurate. In our experiment,
we adjusted these parameters according to the shanten-number
of g so that the Al player can make each decision in a few
seconds with light-weight desktop computers. In this way,
the size of Qs(n, m) is controlled to be about 50,000. The
search algorithm ignores any action that results in a hand
not belonging to Qs(n,m). Our search algorithm is based
on retrograde analysis [26] with which the state values are
determined from states with larger t.

E. Dealing with Popular Rules

In this section, we describe how our Al player deals with
popular rules. A dora is a tile that increases the points of a
hand if it is in the winning hand. A dora tile is selected using
a dora indicator tile, which is chosen by the chance player
with Apanopistrisution- This choice is shared by all players.
The payoff of win or lose is determined in accordance with
dora tiles.

Riich declaration is an action that can be chosen by a player
who formed a tenpai hand without choosing any action in
Ataxe&Discarp Sinc€ Amanpbistrisution. The player who de-
clared riich is unable to change hands but is able to earn more
points when he/she wins. We deal with riich declarations by
adding hands after the declaration in Qs(n, m) and modifying
the payoff of win Uppnwwin(q, h) if ¢ is the hand after the
declaration. In addition, the folding tendency, i.e., other players
tend to fold their hands when one declares riich, is reflected
by modifying the values of P(@omerwin|q,t) and Pr(h|q,t)
according to q.

VII. EXPERIMENT

This section presents the results of gameplays vis-a-vis
existing Al players. We constructed the Al player with the
proposed method as follows. When the shanten-number of the
hand is zero or one, we use Eq. (16) to evaluate the values of
legal actions. When the shanten-number of the hand is two or
three, we use Eq. (17) to evaluate these values. In both cases,
the player is greedy, i.e., the action with the highest value is
selected. We tentatively set = 0.1 in Eq. (11). When the
shanten-number of the hand is greater than three, we adopt
a simple rule-based strategy. The rules used in this strategy
basically determine whether to decrease the shanten number to
win or fold the current hand. To decrease the shanten-number,
the rules state to choose one of the isolated tiles to discard.
To fold the hand, the rules state to choose a tile on the basis
of value estimation using Mi,q. The three Al players are one
Bakuuchi and two copies of manue. The version of Bakuuchi
is the one that achieved its highest dan and ratings (R2206)
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in Tenhou® and is stronger than that published in a previous
paper [22]. Table II lists the results from 3557 gameplays of
mahjong with the tonpu rule’. Because manue is clearly weak,
we focused on to the difference between two ranks of our
Al player and Bakuuchi for each gameplay and observed that
the mean and deviation of the difference were 0.0574 and
1.822, respectively. Given the sample size was 3.56 x 103 and
sample standard deviation was 1.822, the standard error of the
sample mean 5.74 x 1072 was 3.05 x 10~2. Therefore, it is
derived that the sample mean was positive with the one-tailed
significance level of 0.03. This indicates that the performance
of the Al player constructed with the proposed method reached
the world’s highest level.

TABLE II
Experimental results of 3557 gameplays of mahjong with tonpu rule. 1st to
4th columns show empirical probability obtained from results corresponding
to each final ranking.

Ist 2nd 3rd 4th | Average Ranking
Our Al player | 0.33 | 0.28 | 0.21 | 0.17 2.23 + 0.04
Bakuuchi 032 | 027 | 0.21 | 0.20 2.29 + 0.04
manue 0.17 | 022 | 0.29 | 0.31 2.74 + 0.02

VIII. CONCLUSION AND FUTURE WORK

We proposed a method of constructing a state-of-the-art
Al mahjong player. With this method, multiple MDPs are
introduced related to scenarios of a hand. When the shanten-
number of the hand is less than two, MDP M plays an es-
sential role for estimating actions values in mahjong situation.
It takes into account as many scenarios as possible, and the
analysis results are directly used for evaluating actions. When
the shanten-number of the hand is two or more, we use the
results of M yin, Mienpai, and Myoiq4. These MDPs are focused
on a few specific scenarios, and the analysis results are used
as features for inferring state values. We reduced the number
of MDP states to the extent that the expected final-rank error
does not increase so that the calculation ends in a few seconds.

We presented the results of 3557 gameplays of mahjong
with the Al player constructed with the proposed method and
two current Al players, i.e., one version of Bakuuchi, the
strongest player, and two versions of manue whose source
code is published. The results indicate the effectiveness of the
proposed method.

We believe that state-of-the-art Al players (e.g. Bakuuchi
and the AI player constructed with the proposed method) are
reaching the level of the top 200 human Tenhou players. It
is interesting to measure the performance of these Al players
vis-a-vis top human players. Unfortunately, we cannot do this
because three top players have to play with the AI player
for more than one month in a row. To recognize the strength
difference between two top human players, they have to play
a 20-minute game several thousand times.

The models constructed with the proposed method include
an action that does not exist in mahjong. That is, an action
sequence in gameplay to avoid lose and abandon win (fold)

Shttp://tenhou.net/
"This took several months using an ordinary desktop PC.
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is represented using a virtual action aporp. It is reasonable
because an expert player rarely changes her/his strategies in
attempting a win scenario from avoiding lose scenario in the
middle of the action sequence. However, if possible, it is
desirable to handle them comprehensively. Also, because it
may be over simplification to deal with the three opponent
players as a single chance player, more sophisticated methods
may improve the performance of Al players.

Larger but simpler models, such as deep neural networks,
would be better to build stronger AI players. However, we
have not yet constructed such Al players in mahjong. Due to
the large size of the game tree, a larger model will be required
compared, for example, to poker models.
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APPENDIX

This appendix provides supplementary tables that summarize the action sets (Table A), inferred probability (Table IV), and
inferred expected payoffs (Table V).

This paper focuses on four different domains, i.e., one four-player extensive-form game (mahjong) and four MDPs
(M, Mroid, Mwin, Mrenpai)- The players (including chance players) in these domains deal with a variety of actions, which are
categorized into multiple types, as shown in Table II. Each action set contains all actions of the same category. In addition
to the action sets in the table, we also use Apiscarps = Apiscarp U ATake&Discarp aNd Awin = Aprawwin U ATakewin. The
checkmarks indicate the action types treated in these domains. This table also indicates whether a type of action of the type
is chosen by a chance player. The table also shows the number of each type of action by assuming one of the most basic
mahjong rules commonly used in Japan.

These MDPs are defined using several probabilities listed in Table IV and payoff functions (i.e., terminal rewards) listed
in Table V. Let us consider the most basic MDP (illustrated in Fig. 3) to evaluate player i’s actions at information set wuy.
Probability P(arose|q, b, t,uo) forms the transition probability P(s’|s, apiscarp) When s = (g, h,Discard, t,ug) holds. This
probability can be positive when s’ is of type Discard or is two terminal states associated with each of the two payoff
functions Upgse(q, t, uo) and Uwashour(q, o). Probabilities P(aoruerwin|q, t, %o) and Pr(-|q,t) form the transition probability
P(s'|s, anorFoLp) When s = (g, h,Fold,t, ug) holds. This probability can be positive when s’ is of type Take or is a terminal
state associate with payoff function Upeq(g, ¢, ug). Probability Pp(-|g,t) forms the transition probability P(s’|s, apass) when
s = (g, h, Take, t, ug) holds. This probability can be positive when s’ is of type Discard.

TABLE III
Table of action types. ‘Org’ means original game of mahjong, and ‘Chance’ means
chance player.

Action set Org | M | Mpod | Mwin | Mrenpai | Chance | Size
AHANDDISTRIBUTION v Yes 10%4
ADRAW Ve v v v Yes 34
Abiscarp v v v v v 347
ATAKE&DISCARD v v v v 3400
ADrawWIN v v v 1
ATAKEWIN v v v 1
Apass v v v v 1
AFoLp v 1
ANotFoLp v 1
AOTHERDISCARD v v v Yes 34
ALose v v Yes 1
AotHERWIN v v Yes 1

T Size is twice as large as notation when rule set of riich is applied.

TABLE IV
Probabilities in MDPs. Checkmarks indicate probabilities used in each domain. Column labeled ‘Eq.” shows references of equations that explain
corresponding probabilities.

Symbol Description M | Mrold | Mwin | Mrenpai | Eq.
P(arose|q, b, t,uo) Probability that chance player chooses v v (22)
arose as if hand ended up with lose
scenario immediately after ¢, who dis-
carded ¢ tiles from his/her information
set ug, discards a tile of kind A.
P(aoruerwin|q, t, uo) | Probability that chance player chooses v v
aoruerwin as if hand ended with other
win scenario after player ¢ has dis-
carded ¢ tiles from his/her information
set ug.

Po(h|g, t,uo) Probability that chance player serves a | v v v 21)
tile of kind h as if it were brought
to player ¢ from the drawing pile after
4 has exchanged minimum number of
tiles to realize hand ¢ from 4’s infor-
mation set ug.

Pr(hlg,t,uo) Probability that chance player presents | v v v [@2))
a tile of kind h to i as if it were
discarded by one of other players after
4 has exchanged minimum number of
tiles to realize hand ¢ from 4’s infor-
mation set ug.
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TABLE V
Payoff functions in MDPs. Checkmarks indicate functions used in each domain. Column labeled ‘Eq.” shows references of equations that explain
corresponding payoff functions.

Symbol Description M | Mrolda | Mwin | Mrenpai | Eq.
Urola(q, t, u0) Terminal reward when ¢ of ug chooses | v

apoLp in s = (q,null,Fold, ¢, uo).
Uotherwin (10) Terminal reward when chance player | v v 27

chooses agrugrwin  after @ of wg
chooses anorFoLD-

Utakewin (¢, b, uo) | Terminal reward when ¢ of ug chooses | v/ v 24)
atakewiy in 8 = (g, h, Take, t, up).

Ubrawwin (¢, by uo) | Terminal reward when ¢ of | V v (23)
uQ chooses ATAKEWIN in
s = (g, h,Discard, t,up).

Utose (b, uo) Terminal reward when chance player | v v (25)

chooses aposg after ¢ of ug discards a
tile of kind h.

Uwashout (¢, %0) Terminal reward when number of tiles | v v v v (26)
that 7 discards from his/her ug becomes
T.
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