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This article proposes a novel Mahjong game model, LsAc*-M]J, designed to address challenges posed by data scarcity, difficulty in
leveraging contextual information, and the computational resource-intensive nature of self-play zero-shot learning. The model is
applied to Japanese Mahjong for experiments. LsAc*-M] employs long short-term memory (LSTM) neural networks, utilizing
hidden nodes to store and propagate contextual historical information, thereby enhancing decision accuracy. Additionally, the
paper introduces an optimized Advantage Actor-Critic (A2C) algorithm incorporating an experience replay mechanism to
enhance the model’s decision-making capabilities and mitigate convergence difficulties arising from strong data correlations.
Furthermore, the paper presents a two-stage training approach for self-play deep reinforcement learning models guided by expert
knowledge, thereby improving training efficiency. Extensive ablation experiments and performance comparisons demonstrate
that, in contrast to other typical deep reinforcement learning models on the RLcard platform, the LsAc*-MJ model consumes
lower computational and time resources, has higher training efficiency, faster average decision time, higher win-rate, and stronger

decision-making ability.

1. Introduction

Mahjong is considered a prime example of games with
imperfect information, and it is known for its vast search
space. Mahjong originated in China and has since been
widely circulated in East Asia, with many variants. Some
notable variants include Japanese Mahjong (with 136 tiles),
Chinese Official Mahjong (with 144 tiles), Sichuan Mahjong
(with 108 tiles), and Popular Mahjong (also with 108 tiles).
Researchers have applied deep reinforcement learning
models to Mahjong, such as Suphx [1] for Japanese Mahjong
and Tencent’s Lucky] [2], which have successfully defeated
human expert-level players. However, the extensive com-
putational resources required for these models present
challenges for ordinary research laboratories. Suphx utilized
carefully processed player logs for the supervised learning
training phase, although the details of the datasets used have
not been disclosed. Additionally, commonly played

Mahjong variants like Chinese Official Mahjong, Sichuan
Mahjong, and Popular Mahjong currently lack publicly
available datasets. In addition, the intricate relationships
between contextual actions in Mahjong make it difficult to
fully utilize relevant information.

The Advantage Actor-Critic (A2C) algorithm is an ef-
fective approach for tackling problems in complex state
spaces. It has shown impressive performance in 3D games
with incomplete information [3, 4]. Mahjong, being a game
with high complexity and rich information, serves as an
excellent example for examining the capabilities of A2C.
A2C’s ability to handle high-dimensional state spaces makes
it suitable for application in Mahjong, leading to improved
decision-making. However, A2C encounters difficulties with
convergence when dealing with highly correlated input data.
In the case of Mahjong, the hand information in different
rounds is strongly correlated, which poses a significant
challenge for A2C. To overcome this issue, this study
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incorporates an experience replay mechanism [5] into A2C.
This mechanism creates a replay pool to store experiences,
allowing for random sampling of small batches of data for
learning. By introducing this feature, we aim to disrupt the
data correlation and address the convergence challenges
faced by the model in the context of Mahjong gaming.

Long short-term memory networks (LSTMs) are both
general and effective at capturing long-term temporal de-
pendencies [6]. In Mahjong, players sequentially play their
tiles in a designated order, and experienced players make
predictions about their action strategy based on the oppo-
nents’ discards. The current and preceding actions in
Mahjong significantly influence decision-making and can be
considered a game with temporal characteristics. Therefore,
the proposed model in this paper adopts LSTM networks,
which are sensitive to temporal information, to capture and
utilize the temporal patterns present in Mahjong. The
hidden layer nodes of the LSTM network are employed for
capturing and leveraging both the long-term reward signals
and the historical tile information. This enhancement
contributes to the accuracy of predicting the value associated
with tile placement actions.

Mahjong has the problems of lack of high-quality
datasets and difficulty in fully utilizing context-associated
information. In view of these problems and the fact that it is
difficult for ordinary laboratories to afford huge computa-
tional resources to carry out self-play model training from
zero, this paper carries out the research work on Mahjong
game models with low resource consumption and high
performance. The main contributions are as follows:

(1) The LsAc*-M]J mahjong model is proposed, which
consumes lower computational resources while
maintaining higher decision accuracy. The model
employs an improved A2C and integrates the ex-
perience replay mechanism into the A2C, resulting
in lower computational resource requirements and
higher decision efficiency. The suitability of this
model for Mahjong, coupled with its ease of
implementation in ordinary laboratories, serves to
mitigate the convergence challenges linked to strong
correlations among Mahjong hand information.

(2) The LSTM network is applied for the first time in the
Mahjong game model. LSTM networks are applied
to Mahjong game models, effectively addressing the
challenge of underutilizing extensive contextual
correlations in Mahjong. Hand information, coupled
with action-value sequences, is input into the LSTM
network. The hidden layer nodes of the network
process long-term reward signals and historical tile
information, enabling the model to leverage tem-
poral relationships among historical information for
optimal action selection in the current game state,
thereby enhancing decision accuracy.

(3) The paper proposes a two-stage training method for
knowledge-guided deep reinforcement learning
models. By combining knowledge-guided training
and self-play, the model learns hand information and

International Journal of Intelligent Systems

action-value sequences based on expert knowledge
during the knowledge-guided phase, enhancing the
accuracy of action-value predictions. After the
model’s loss stabilizes, the training transitions to the
self-play phase to improve action decision-making
capabilities. This training method circumvents the
issue of limited datasets, saves training time, and
enhances decision speed.

The remainder of this article is structured as follows.
Section 2 provides a brief overview of the related work in
Mahjong game research. The detailed description of the
proposed Mahjong game model with the improved A2C is
presented in Section 3. Section 4 encompasses experiments,
comparisons, and property analysis. Finally, concluding
remarks and future avenues for investigation are provided in
Section 5.

2. Related Work

Mahjong agents were initially constructed using knowledge-
based approaches. The expert knowledge is used to set action
priorities, and the search algorithms are used for decision-
making. The completeness and appropriate representation of
human players’ knowledge as rules play a crucial role in
determining the agent’s proficiency. Agents such as Long
Cat [7], LongCatM] [8], MahjongDaXia [9], VeryLongCat
[8], and others were developed using expert knowledge, but
their decision-making abilities are limited due to the in-
completeness of expert knowledge. Literature [10, 11] im-
proved the agent’s proficiency by combining opponent
modeling with game tree structures. The complexity of
Mahjong means that only a limited number of situations can
be regularized. A large number of intuition-based decisions
are difficult to describe in rules, limiting the performance of
agents relying on expert knowledge in the face of variable
game situations. These agents tend to prefer strategies that
pursue fast listening and drawing, as well as avoiding being
drawn by other players. Although compliant with the basic
rules of Mahjong, the agents lack the flexibility to cope with
the variable game situations in Mahjong.

As data processing power continues to increase and
neural networks advance, there is an increase in the con-
struction of data-driven Mahjong agents. Agents with data-
driven approaches learn features from large amounts of
game data and optimize decision models through contin-
uous training. Literature [12, 13] employed CNN (con-
volutional neural networks) to construct Mahjong game
models, improving discard accuracy. Literature [14] pio-
neered the application of residual neural networks to
Mahjong in Shangrao, Jiangxi Province, China. Its game data
of top-ranked master players were selected, and low-level
semantic features were used to guide the model learning. The
agent can learn and apply high scoring tile types is realized.
Literature [15] used ResNet (residual network) to build
Mahjong agents, combining them with XGBoost (eXtreme
gradient boosting), low-level semantic features, and others.
Literature [1, 2, 16-21] used deep reinforcement learning to
construct Mahjong agents, achieving substantial
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improvements in average proficiency. Suphx [1], the first
Mahjong AT to surpass top human players, used handcrafted
features and a complex model structure, leading to extensive
computational resource requirements that ordinary labo-
ratories cannot provide. Subsequent optimization studies
focused on adjusting data structures [22], optimizing feature
engineering [23], and developing distributed frameworks
[23]. Lucky] [2], developed by Tencent AI Lab, surpassed
Suphx, reaching a professional ten-dan level in Japanese
Mahjong and achieving victory over Chinese official Mah-
jong professional players. Lucky] proposed a neural-based
CFR algorithm with game tree search results as a feature,
which not only has a low drawn rate but also has perfect
attack and defense strategies. The main data-driven agent
construction methods have been specifically analyzed, and
the disadvantages are listed in detail in Table 1. It can be seen
that most of these methods generally have the problems of
over-reliance on high-quality datasets and high demand for
computer resources. Besides, no researcher has focused on
how to use the temporal relationship available in Mahjong
state information. Therefore, the low resource consumption
model, LsAcs*-M], was proposed to fully utilize the temporal
sequence of mahjong state information, greatly reducing
dependence on datasets while improving decision-making
ability.

The A2C algorithm (Advantage Actor-Critic) is in-
troduced by Barto et al. and is a kind of reinforcement
learning algorithms. The A2C combines value functions with
policy gradients through synchronous updates [24, 25]. It is
an optimization of the A3C (Asynchronous Advantage
Actor-Critic) algorithm [4]. This algorithm replaces multiple
groups of agents with asynchronous updates with simul-
taneously interacting, making it simpler and more CPU-
efficient. In comparison to value-based methods such as
DQN [5, 26], Dueling Deep Q-Network [27], and Double
Deep Q-learning [28], A2C strikes a balance between ex-
ploration and exploitation, making it particularly suitable for
handling high-dimensional state space problems. Actor-
Critic algorithms have demonstrated excellence in various
domains, including robot control [29-31], 3D games like
First-Person Shooter (FPS) [3], and Atari 2006 [4]. However,
the A2C has not been applied in the context of Mahjong
gaming.

LSTM (long short-term memory) is a neural network
architecture designed to process sequential data [6].
Building on the foundations of recurrent neural networks
(RNNs) [32], LSTM introduces memory cells to address
the problem of vanishing gradients during the back-
propagation process [33]. By using hidden layer nodes to
capture temporal dependencies between data points,
LSTM is well suited for handling and predicting data with
time-series relationships. LSTM has extensive applica-
tions in natural language processing [34, 35], speech
recognition [36, 37], and image processing [38]. By
capturing long-term dependencies in text, speech, and
images, LSTM improves prediction accuracy. However,
LSTM networks have not yet been applied in the context
of Mahjong.

3. Rule of Japanese Mahjong

A complete set of Japanese Mahjong contains a total of 136
tiles. These tiles are divided into two categories: numbered
tiles and honour tiles. Numbered tiles consist of numbers 1
to 9 and are divided into three suits: characters, bamboos,
and dots. Honour tiles include East, South, West, North, Red
Dragon, White Dragon, and Green Dragon. Each tile has
four copies, so a full set of Mahjong tiles comprises 136 tiles.

The main actions involved in the game include drawing
tiles, chow, pong, kong, discarding tiles, and Riichi. In
Mahjong, two identical tiles are generally called a pair, three
identical tiles are called a triplet (e.g., 888 characters), and
three sequentially consecutive tiles (e.g., 123 bamboos) are
called a sequence. Typically, chow involves forming a se-
quence by obtaining a discarded tile from the preceding
player. Pong involves forming a triplet by obtaining any
discarded tile from an opponent. Kong involves obtaining
any discarded tile identical to a pair after forming a pair. In
the same turn, the player applying for kong receives priority
in acquiring the tile, followed by the player applying for
pong, and lastly, the player applying for chow. It is important
to note that kong and pong actions cause the turn to pass
directly to the player proposing the action, skipping other
players. “Riichi” is a unique rule in Japanese Mahjong. If
a player believes they have met the conditions to declare
a win, they can declare “Riichi” to exchange for a high
scoring reward. Declaring Riichi means the player’s sub-
sequent actions can only be winning or discarding the drawn
tile; they cannot manipulate their hand tiles further.

An opening is required before the start of the game to
determine the position of the dealer’s starting draw. The four
players draw tiles in a fixed order, each obtaining a set of 13
initial tiles. Through continuous actions, they update their
hand tiles to achieve a winning hand. A winning hand in
Japanese Mahjong typically consists of a pair and several
sequences and triplets. Additionally, there are some special
combinations such as seven pairs, fully concealed hand, full
flush, thirteen orphans, nine gates, and all honours, which
bring high scores. In our experiment, we focus on whether
the model eventually wins or not, so scoring is simplified to
only distinguish between winning, losing, or a draw.

4. LsAc*-M]J Model

4.1. Combing Experience Replay into Actor-Net and Critic-Net.
The Actor-Critic series is a comprehensive algorithm that
combines the advantages of value function and strategy
gradient. Compared with value function-based methods
such as DQN, the AC algorithm effectively balances ex-
ploration and exploitation and is more suitable for dealing
with Mahjong in high-dimensional state spaces. The hand
information of different rounds of Mahjong is highly cor-
related, and the A2C algorithm requires a more complex
tuning process in its application. Given the high-
dimensional state space, A2C is sometimes not as stable
as the methods based on the value function alone and is
prone to nonconvergence.
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Drawing on the success of DQN [5], we introduce an
experience replay mechanism for the A2C model as well.
Experience replay constructs a circular experience replay
pool to store the agent’s experiences (i.e., state transitions,
actions, rewards, and new states) while exploring the en-
vironment. During training, the algorithm samples a ran-
dom batch of experiences from the pool as input, rather than
just using the latest experience to update the model. Suc-
cessive observations tend to be highly correlated, which can
lead the model to over-rely on recent experience rather than
learning a generalized strategy. With random sampling, the
model can learn from different experiences, which helps
improve the quality and generalization of the final strategy.
Besides, experience replay improves the efficiency of data
usage, by storing experiences and reusing them multiple
times, the need for new data can be significantly reduced.

Aiming at the high-dimensional state space of Mahjong
game, the LsAc*-M]J model is proposed on the basis of the
A2C algorithm and the experience replay mechanism to
improve the convergence speed and stability of the model.
The architecture of the LsAc*-MJ] model is shown in
Figure 1.

Among them, the Actor-net and the Critic-net adopt the
LSTM networks. The inputs to the network are formed by
random sampling from the experience pool. The Actor-net
outputs possible actions with their probability values, and
the value network outputs the evaluation value for the
current action. The Actor-net update function is the cross-
entropy function, and the Critic-net update function is the
mean-variance loss function.

Taking the s, as input to the Actor-net, we obtain the
P, ion (1). These probabilities consist of n possible actions,
and the action a, with the highest probability is selected and
executed, transitioning to the s,,;.

PAction:[pl’p2>""pn]' (1)

The other outputs of Actor-net are g, and 4, , which are
listed in (2) and (3).

a; = T[(' | St5 6now)> (2)

Ay = T[(' | Sti13 enow)’ (3)

where s, represents the game state at time ¢, including one’s
own concealed and exposed tiles, opponents’ exposed tiles,
and discarded tiles. The Actor-net outputs action proba-
bilities, denoted by a,, and a, represents the action with the
highest probability. 4,,, corresponds to the action with the
highest probability in the next state after executing action a,,
00w representing the parameters of the Actor-net at time .

The Critic-net evaluates the current state s, obtaining
the evaluation value V,. After inputting s,,, into the Critic-
net, the evaluation value V,,, is obtained. The formulas for
the output of the Critic-net, representing the evaluation
values V, and V,,,, are as shown in (4) and (5).

5
Vt = V(St’at’ wnow)’ (4)
Vt+1 = V<St+1’ at+1’ wnow)’ (5)

where w,,, represents the Critic-net parameters at time t. a,
is the action chosen by the actor based on s, and @, is the
action chosen by the Actor-net based on s, ;. The update of
network parameters requires calculating the TD error,
utilizing the two evaluation values V, and V,; along with
the environmental reward, as shown in (6).

TD = R(spa,) +y1Vi1 = Vo (6)

where y, is the discount factor, representing the weight of
V.1 typically ranging between 0 and 1. R (s, a) is the reward
value received by the environment s, after executing action
a,. For example, R(s,,a,) = 3 indicates the model achieving
victory, R(s;,a,) =—1 indicates the model experiencing
failure in the game. R(s;,a,) =0 indicates a draw in the
game, where no one emerges victorious at the end.

As A2C is a synchronous updating algorithm, both 6,
and w,,, represent the Actor-net and Critic-net parameters
at time t. The update formulas for 8 and w are shown in (7)
and (8).

O ew = Onow + aVglogmg(a, | 5,5 6,0, ) TD, (7)

new

w +BxTD =V, V,, (8)

new — @now

where « and f3 are hyperparameters of the neural network. «
is the learning rate of the Actor-net, and f3 represents the step
size for updating the value function.

In the A2C model, the Q-value is computed using (9).

Q (spa)) =R(spa,) +, Z V (St1> Apa)- (9)

St+1

Here, y, is the discount factor, taking values between
0 and 1, and is used to measure the importance of future
rewards.

In each turn of Mahjong, actions are inherently corre-
lated with historical information, resulting in input data
exhibiting strong correlations that hinder the convergence of
A2C. Therefore, the model incorporates an experience replay
mechanism to promote convergence through random
sampling. With the introduction of the experience replay
mechanism, the model’s Q-values become dependent on
reward values and the maximum Q-value of all possible
actions after the state transition. The formulation for Q-
value calculation is given by (10).

Q, (s;a,) = R(spa,) + A * Max[Q(s,,,allaction)],
(10)
where the parameter A, commonly referred to as the dis-

counting parameter, is utilized to balance current and future
rewards. It takes values in the range of 0 to 1. When A
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FiGURE 1: LsAc*-M]J model.

approaches 1, there is a greater emphasis on future rewards,
while when A approaches 0, there is a greater emphasis on
current rewards.

The activation function employed is the SoftPlus, with
a range of values in the interval (0, +00), as shown in (11).

Softpuls (x) = log (1 + €¥). (11)

The pseudocode for the core components of the LsAc™-
M]J model is shown in Table 2.

4.2. LSTM Networks Adopted by the Model. Mahjong is
a game full of strategy and skill, in which the four players
play the tiles in a prescribed order, and the temporal in-
formation embedded in the sequence of their play is crucial.
First of all, the types of tiles played by the players in each
round constitute the basic temporal information, which not
only reflects the current strategic intention of the players but
also provides clues for the opponents to infer the structure of
their hands. For example, playing cards of the same suit
consecutively may imply that the player is trying for
a straight or a clean slate. Second, the choice and timing of
actions such as chows, pongs, and kongs also constitute
important timing information. By changing the dynamics of
the hand through these actions, a player not only demon-
strates his or her own offensive or defensive strategy but may
also influence the decision-making process of other players.
For example, choosing to pong a card may indicate that
a player is actively building a hand, whereas ignoring the
opportunity to pong a card may mean that a player is
pursuing a higher-value hand or hiding his or her strength.
In addition, the progression stages of the game are them-
selves a form of temporal information, and players’ strategies
and behavioral patterns can vary significantly from stage to
stage. Early in the game, players may be more focused on
building and accumulating hands, while near the end of the
game, players are more likely to be conservative in their
decision-making or to seek a quick draw. Players’ behavioral
patterns, including how they respond to their opponents’

attacks and how they make decisions in different situations,
contain a wealth of information, and if this temporal in-
formation can be appropriately utilized for decision-making,
it can lead to a rapid improvement in the performance of
mahjong gaming agents.

Long short-term memory (LSTM) networks are
designed for processing long sequential data [6]. Through
gating mechanisms and memory cells, LSTM networks
provide a powerful way to process temporal information and
learn temporally separated dependencies from data. Cur-
rently, LSTM has become one of the preferred techniques for
dealing with sequential data and complex time series pre-
diction problems. The proposed Actor-net and Critic-net of
the model both adopt a long short-term memory (LSTM)
network structure with five hidden layers, as illustrated in
Figure 2. This structure includes six input channels, one fully
connected layer, and an output layer.

The LSTM consists of three gate controllers: an input
gate, a forgetting gate, and an output gate, which work
together to decide whether information is retained, for-
gotten, or updated. How the three gate controllers work is
shown in the following (12)-(14). The working principle of
the input gate is shown in (12). The working principle of the
forget gate is shown in (13). The working principle of the
output gate is shown in (14). How the three gate controllers
work is shown in the following (12)-(14):

i, = Sigmoid (W, - [x,, h,_] + b;), (12)
fe= Sigmoid(Wf xp by ]+ bf), (13)
o, = Sigmoid (W, - [x,, h,_;] + b,), (14)

where i, denotes the computed result of the input gate at
T =t, f, denotes the computed result of the forget gate at
T =t, and o, denotes the computed result of the output at
T =t. W denotes the corresponding weight matrix. b is the
computed bias term.
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TaBLE 2: Pseudocode of LsAc*-M]J model.

//LsAc-M] model pseudocode
Initialize Actor-net (8) and Critic-net (w)
Initialize replay buffer D
Initialize t, a, f8
while stopping criterion not met do
environment.reset () get state s(t)
while not done do
a(t) <« actor_net (s(t), 0)
s(t+1), r(t), done «— environment.step (a(t))
/Istore transition in replay buffer
D.add(a(t), r(t), s(t), s(t+1), done)
t—1t+1
end while
/Irandom sampling
Batch «— D.sample(batch_size)
/[calculate discounted rewards and advantages
Rewards «— calculate_discounted_rewards(Batch.rewards)
A «— calculate_advantages(Critic-net(w), Batch.states,
rewards)
/lupdate networks parameters
Loss «— update_networks(A, Batch, 6, w)
0 «— 0+ a actor_loss_gradients
w «— w+ f3 critic_loss_gradients
end while

In addition to the gating mechanism, the memory
function of LSTM, which is represented by (15), mainly
comes from its memory cell ¢, represented by equation (16):

U (Wg [xe b ] + bg)’ (15)

= fr ¢ ti gy (16)

where g, denotes the cellular state of the candidate at T = ¢,
f, determines the amount of signals that are continued to be
memorized, and i, determines which of the current signals
will be remembered.

After the data are input into the model and stored in x,,
h,, the hidden states of the LSTM continuously propagate
between different time steps within the current layer and the
same time step in the next layer. As shown in Figure 3, at
time T = ¢, information progresses layer by layer from the
input layer through the hidden layers, completing the
horizontal transmission for the same time step. Meanwhile,
at time T = t, the model receives information transmitted
from time T' =t — 1 and passes the processed information to
time T =t + 1, completing the vertical transmission across
different time steps. This mechanism, involving both vertical
and horizontal transmission, ensures that predictions not
only consider the current time step’s state but also take into
account the states of historical time steps, maintaining the
correlation of information in the time series. This is crucial
for handling historical discard information and reward
information in the Mahjong, allowing for better utilization
of historical information to guide current decision-making.

To ensure that the model fully understands temporal
features, we vertically slice the state matrix based on in-
formation features. In addition to the player’s own hand, the
current discarded tiles and the opponent’s exposed tiles are
also taken into consideration. The feature dimensions are 6,

corresponding to input_1 through input_6. Specifically, six
sequences of matrices are input sequentially. The state
encoding is illustrated in Figure 4.

After the information is encoded, it forms a matrix of
dimensions, which is the input of the model. When in-
putting the state information into the network, most re-
searchers adopt a horizontal slicing approach [12-15], which
involves splitting along the 34 types of tiles. We employ the
different slicing method, segmenting the input based on the
respective categories. This approach not only aligns closely
with human understanding of the tile information in real-
world scenarios but also allows the neural network model to
better capture temporal features.

4.3. Knowledge-Guided Two-Stage Training Method. In sit-
uations where ordinary laboratories cannot provide
powerful computational resources, training from zero
through self-play is highly sensitive to hyperparameters
and tends to be slow. The common approach for many
researchers is to initially use supervised learning before
self-play training. However, manually decomposing and
selecting game data for supervised learning is time-
consuming and ineflicient. Therefore, this paper pro-
poses a novel training method that differs from supervised
learning, which relies on a game dataset, and from self-
play training, which starts with completely random ex-
ploration. Instead, it employs a two-stage training ap-
proach: the first stage involves knowledge-guided
training, and the second stage comprises self-play train-
ing. This method saves training time, enhances the speed
of model decision-making, and effectively circumvents
the issue of a limited Mahjong dataset.

4.3.1. First Stage Training with Knowledge Guidance. The
first stage of knowledge-guided training is illustrated in
Figure 5. The four models in the game include an LsAc*-M]
model trained from zero and three knowledge-guided
models. In the initial stages of training, action selection is
random. After each round, the actions of the expert-guided
models, along with their corresponding reward, are encoded
as states and input into the LsAc*-M]J model for learning and
parameter updates. By learning from the actions of the
expert-guided models, excessive exploration caused by
random discarding at the beginning of training is avoided.
This allows the model to quickly grasp the game rules,
thereby accelerating the training process.
Knowledge-guided agents make choices in decisions
with the help of action prioritizations that have been set
based on the knowledge accumulated by humans in order to
achieve better game performance. The prioritization of these
moves is derived from the general knowledge and experience
of humans in the game of Mahjong. For example, as dragon
tiles are not easily formed into winning tile combinations
and discarding them does not result in significant point loss;
players typically prioritize discarding dragon tiles. Therefore,
we set discarding flower tiles as the first level and assign the
highest reward value to guide the model to prioritize this
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FIGURE 2: The network structure employed by the LsAc*-MJ model.
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FiGure 3: Information transmission in the network structure.
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FIGURE 4: State encoding.

strategy during decision-making. Table 3 shows the specific
prioritization of these actions and provides the brief de-
scription and examples of each level.

After observing the current state, the agent will evaluate
all the actions based on the set priority of the action and its
value, after which it will select the action with the highest
valuation for execution. It is noteworthy that the decision-
making process of the knowledge-guided models only in-
cludes strategies based on the current hand, without in-
volving how to utilize historical information to calculate
opponent information and predict reward. This design aims
to avoid introducing too much knowledge that could in-
fluence the depth of exploration in reinforcement learning.

4.3.2. Second Stage Self-Play. The knowledge-guided train-
ing stage is halted once the loss function converges to
stability. Then, the model’s performance is continually
improved through self-play. The self-play method is well
suited for Mahjong and other gaming games because it
allows the agent to play against itself without external input
to learn updates and gradually improve its performance. The
core advantage of the self-play is that it constantly seeks
a balance between exploring new strategies and optimizing
known ones, thus achieving self-improvement. Self-play
demonstrates the potential of agents in the process of
self-evolution and is also used by Suphx [1]. Therefore, we
apply the self-play to the continued training of LsAc*-
M]. Without relying on human data and prior knowledge,
LsAc*-M] is able to independently explore the strategy space
through self-play and find strategies that may exceed the
existing human level. In addition, it also allows LsAc*-M] to
improve its generalization ability through extensive self-
challenging.

In this process, the LsAc*-MJ model acts as the four
players, engaging in mutual play at the same Mahjong table.
Based on feedback from the game environment, the network
parameters are updated, enhancing the accuracy of the
model’s decision-making through multiple iterations. By
combining the training approach that integrates expert
guidance and self-play learning, not only is training time
saved, but the accuracy of decision-making is also improved.

Currently, 40,000 rounds of training have been conducted
on the RLCard platform, comprising 10,000 rounds of
knowledge-guided training and 30,000 rounds of self-play.

5. Experiment and Analysis

5.1. Experimental Design. In this chapter, we designed some
series of experiments in order to validate the level of the
Mahjong game model LsAc*-M] proposed in this paper.
First, ablation experiments on the LSTM networks adopted
by the LsAc*-MJ model were conducted to verify its effect on
the model’s gaming ability. Second, ablation experiments on
the two-stage training method adopted by LsAc*-M] were
conducted to verify that it can shorten the training time.
Finally, ablation experiments on the experience replay
mechanism were performed to verify that the convergence of
the model can be accelerated effectively. In addition, the
LsAc*-MJ model was played against other reinforcement
learning models including NFSP, DQN, and DuelingDQN
to verify the high decision-making ability of the
proposed model.

5.2. RLCard Platform. The testing platform for Mahjong Al
utilizes the open-source game platform RLCard [39], de-
veloped by Texas A&M University for reinforcement
learning in card games. This platform provides a testing
environment for various popular card games, including
Mahjong, along with some implemented algorithm in-
stances. Researchers can integrate their own algorithms into
this platform.

On the RLCard platform, Mahjong testing can auto-
matically generate hand tiles, start games, and supervise
game outcomes. We adjusted the encoding of game in-
formation returned from the platform and input it into the
model for learning. The relevant parameters are set as fol-
lows: the batch size=128, 1=0.99, the discount factor
y =0.95, and adopt Adam optimizer with LR-Actor =0.0005,
LR-Critic = 0.0001.

5.3. Specifications and Analysis on Four Players in the
Experiments. In this work, each experiment compares
only two algorithms for better results. In offline Mahjong
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FIGURE 5: Knowledge-guided first stage training.
TaBLE 3: Action priority of guided agent.
Priority Action brief description Example Value
1 Discard dragons tile Action = [27] 6
2 Discard single tile State=[[0, 0, 1, 0, 0, ...], ...], action=[2] 3
2 Discard dead tile When there are three nine-bots discarded action = [26] 3
2 Chow pong kong Action = [34, 35, 36] 3
3 Other actions Other 0
4 Divide two sequential tiles State=[[0, 1, 1, O, ...], ...], action=[1, 2] -2
4 Divide sequence without middle tiles State=[[1, 0, 1, 0, ...] ..], action = [0, 2] -2
5 Divide pair State =[[0, 0, 1, O, ,[0,0,1,0,...], ...], action=[2] -4
5 Divide triplet State=[[0, 0, 1, ...], [ ,0,1,...], [0, 0 1,...],...], action=[2] -4
5 Divide sequence State = [[0, ,1,1,0,...],...], actlon [2, 3, 4] -4
games, it is easier to cheat due to more interaction with the O(S,) = 0(S4,S5) + O(S4,Sg) + O (S, S0), (17)

left and right players of the table, such as the player on the
left feeding the player on the right needed tiles. Therefore,
in many Mahjong agents’ gaming competitions, such as
the Chinese Computer Gaming Championship, players
from the same organization are not allowed to be adjacent
to each other on the Mahjong table in order to avoid
players assisting each other in cheating. In this experi-
ment, the staggered seating setup method is also used,
where we set the same algorithmic agents in nonadjacent
positions on the Mahjong table. A seat rotation is per-
formed after a number of games to ensure that the same
algorithmic model participates in the experiment in every
orientation.

The four directions of the mahjong table (east, west,
south, and north) are represented by the numbers 1-4.
Starting from the level of interaction and competition be-
tween players of different directions with other players in the
game, we analyzed the effect of seating setup on the ex-
periment. In the following, we prove the scientific validity of
the experimental setup of staggered seating in this paper.

The four players are denoted as A, B, A',and B'. The seats
are denoted as S;. O(S;,S;) denotes the total interaction
degree that the model in the seat can obtain in a game, and
R(S;,S;) denotes the total competition degree that the model
in the seat can obtain in a game. The interaction degree
between different seats is shown in Figure 6.

For each agent, the chance of obtaining an interaction
can be expressed as the following (17)-(20):

O(SB) = O(SB,SA) + O(SB,SB:) + O(SB,SAf), (18)
O(SA’) =

O(Sp) =O(Sy,»Sg) +O(Sg»S4) +O(Sg»Su) (20)

O(Su»S5) +O(Sa»Sp) +O(S45S,4),  (19)

The interaction is the same for both parties, and thus,
there is O(S;,S;) = O(S;,S;), so in a game of Mahjong, there
is (21)

0(S,) +0(Sy) = O(Sy) + O(Sy)- (21)

In our experiments, A and A’ use the same strategy, B
and B’ use the same strategy, so there are O(S,,
Sp) =0(S4,8g), O(S48y) =0(S4,S5), O(S4Sy) =
O(S,4»S,4), and O(Sp, Sy') = O(Sp, Sp). Extending this to
a number of rounds shows that in a staggered setup, the
interaction degree available to the agent is equal in all four
directions, as in (22).

1NOS ~1NOS ~1
R 2060 ~x Yol =
(22)

Similarly, it can be deduced that in the case of staggered
settings, the same is true for the degree of competitiveness
R(S;), as in (23).

zo(sA,)z%Zo(sB,).
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FiGUre 6: Topology of different seating interaction opportunities.

%ZIZR(SA) :%ZR(SB) x% RICY x%ZIZR(SB:).

(23)

5.4. Ablation Experiments on the LsAc*-MJ Model. To verify
the effectiveness of the empirical replay mechanism adopted
by the LsAc*-M] model, the LSTM network structure, and
the two-stage training method on the improvement of the
model convergence speed, training time, and game win-rate,
this paper designs ablation experiments and trains three
mahjong game models.

RL-Lstm: A reinforcement learning model without the
experience replay mechanism. The other parts include
the A2C algorithm, network structure, and training
method consistent with the LsAc*-MJ model. It is used
to compete with LsAc*-M]J to assess the impact of the
experience replay mechanism on the model’s com-
petitive ability.

RL-zero: A reinforcement learning model trained using
only self-play, with the other parts including the net-
work structure, A2C algorithm, and experience replay,
consistent with the LsAc*-MJ model. It is used to
compete with LsAc*-M]J to evaluate the influence of
expert knowledge-guided training on the model’s de-
cision accuracy and training time.

RL-cnn: A reinforcement learning model trained using
the A2C model with a LeNet-5 network structure for
the policy and value networks. The other parts include
the A2C algorithm, experience replay, and training
method consistent with the LsAc*-M]J model. It is used
to compete with LsAc*-MJ to assess the impact of
LSTM networks on the model’s decision-making
ability.

In addition, Random, a randomized card-out model
provided by RLCard, was used as a common adversary, and
the level of Random was kept consistent when the random
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seeds employed in the experiments were the same. The
specific results and analysis of the ablation experiments are
shown as follows.

5.4.1. Experiments and Analysis on Experience Replay

(1) Influence on Model Convergence. To assess the impact of
the experience replay on model convergence, we compared
the convergence of LsAc*-M] with RL-Lstm, which does not
utilize the experience replay. Both models were trained on
a single GPU server. Figure 7 illustrates the convergence of
the loss for the Actor-net, while Figure 8 shows the con-
vergence of the loss for the Critic-net.

From Figure 7, it can be observed that the loss for the
Actor-net of our model converge to the range of 0 to 5 after
around 50,000 steps. In contrast, the RL-Lstm model,
which does not utilize the experience replay, exhibits re-
current oscillations in the range of [40, 70] even after
200,000 steps.

From Figure 8, it can be observed that the loss values for
the Critic-net of our model converge to the range of [0, 10]
after around 50,000 steps. In contrast, the RL-Lstm model
continues to exhibit concentrated oscillations in the range of
[20, 50] even after 200,000 steps.

The experiments demonstrate that with the introduction
of the experience replay, both the Actor-net and Critic-net
exhibit a gradual reduction in loss, tending towards stability
as the training epochs increase. In contrast, the model
without experience replay shows significant oscillations in
the loss curves without a clear convergence trend. This
proves that the experience replay effectively addresses the
challenge of convergence in the A2C model.

(2) Impact on Win-Round and Win-Rate. To assess the impact
of the experience replay on model performance, we compared
the cumulative win-round and win-rate of two models. We
conducted games with the LsAc*-MJ and RL-Lstm separately
against the model Random. In the first 1000 nondraw rounds,
we recorded the average cumulative win-round for each model
in the four positions. As shown in Figure 9, the LsAc*-MJ
model performed the best in terms of cumulative win-round.

From Table 4, it is evident that our model has an average
win-rate of 51.8% in positions 1-3, surpassing RL-Lstm by
1.9%. In positions 2-4, the average win-rate is 55.1%, sur-
passing RL-Lstm by 4.4%. Our model exhibits an average
win-rate across all positions that is 3.15% higher than RL-
Lstm. These results demonstrate that the Mahjong model
with the experience replay achieves a higher win-rate.

The experimental outcomes validate that the experience
replay weakens the correlation between Mahjong input
features, enabling the model to converge rapidly and en-
hancing its win-rate, thereby improving decision-making
capabilities.

5.4.2. Experiments and Analysis on LSTM Network
Structures. To demonstrate the impact of the LSTM net-
works used in this paper on model performance, we
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FIGURE 7: Actor net-loss over steps. (a) LsAc*-M]. (b) RL-Istm.
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FIGURE 8: Critic net-loss over steps. (a) c. (b) RL-Istm.

compared the cumulative win-round and win-rate of LsAc*-
M] with RL-cnn, which employs a convolutional neural
network. Each model played against the Random, and in the
first 1000 nondraw rounds, we recorded the average cu-
mulative win-round for each model in the four positions, as
shown in Figure 10. LsAc*-M] consistently achieved higher
cumulative win-round per hundred rounds compared to the
RL_cnn model. The average win-rate comparison between
the two models is presented in Table 5, showing that LsAc*-
M]J outperforms RL_cnn in each hundred rounds. In po-
sitions 1-3, LsAc*-M]’s win-rate surpasses RL_cnn by 4.4%,
and in positions 2-4, it surpasses RL_cnn by 6.5%. The
average win-rate across all positions is 5.45% higher for
LsAc*-MJ compared to RL_cnn.

The experimental results demonstrate that the LSTM
networks allow the LsAc*-MJ] model to consider both the
current state and the historical state in predicting tile dis-
cards. This utilization of discarded tile information and
reward information in Mahjong results in higher cumulative

win-round and average win-rate, enhancing the model’s
decision-making capabilities.

5.4.3. Experiments and Analysis of Knowledge-Guided Two-
Stage Training. To demonstrate the influence of the training
method advocated in this paper, we adopted the RL-zero for
a comparative analysis. This model shares an identical
network structure with LsAc*-M]J, incorporates the expe-
rience replay, but self-playing from an initial state. We
conducted a comparison across cumulative win-round, win-
rate, training time, and decision time, between LsAc*-M]
and RL-zero.

(1) Win-Round and Win-Rate Comparison. We conducted
games with the LsAc*-MJ and RL-zero separately against the
model Random. In the first 1000 nondraw rounds, we
documented the average cumulative win-round for each
model in the four positions, as illustrated in Figure 11. With
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FiGure 9: Win-round of RL_Istm or LsAc*-M] (both vs. random).
TaBLE 4: Win-rate comparison of LsAc*-MJ or RL_Istm vs. random.
Round
Model
100 200 300 400 500 600 700 800 900 1000
LsAc*-MJ (1-3) 0.532 0.505 0.507 0.518 0.518 0.536 0.517 0.511 0.517 0.519
LsAc*-MJ (2-4) 0.562 0.576 0.576 0.546 0.557 0.541 0.537 0.539 0.541 0.536
RL_Istm (1-3) 0.482 0.497 0.503 0.492 0.485 0.506 0.502 0.503 0.507 0.509
RL_Istm (2-4) 0.494 0.507 0.507 0.500 0.495 0.509 0.510 0.514 0.517 0.521
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Figure 10: Win-round of LsAc*-M]J or RL_cnn (both vs. random).
TaBLE 5: Win-rate comparison of LsAc*-MJ or RL_cnn vs. random.
Round
Model
100 200 300 400 500 600 700 800 900 1000
LsAc*-MJ (1-3) 0.532 0.505 0.507 0.518 0.518 0.536 0.517 0.511 0.517 0.519
LsAc*-MJ (2-4) 0.562 0.576 0.576 0.546 0.557 0.541 0.537 0.539 0.541 0.536
RL_cnn(1-3) 0.427 0.481 0.484 0.457 0.454 0.479 0.487 0.487 0.486 0.502
RL_cnn(2-4) 0.445 0.487 0.482 0.480 0.479 0.502 0.491 0.497 0.493 0.504
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an escalating number of rounds, the cumulative win-round
of the knowledge-guided model LsAc*-M] consistently
exceeded those of the model RL-zero rained solely through
self-play.

As shown in Table 6, the average win-rate per hundred
rounds and the overall average win-rate of LsAc*-MJ con-
sistently surpassed those of the RL_zero. The win-rate of the
LsAc*-M] exhibited an improvement of 2.35% compared to
RL_zero, with a 2.4% increase in positions 1-3 and a 2.3%
increase in positions 2-4. The experiments indicate that the
two-stage training method with expert knowledge guidance
leads to a stable enhancement in the performance of the model.

(2) Training Time Comparison. In comparison between
LsAc*-MJ and RL_zero, as illustrated in Figure 12. Under
the same network structure, the RL_zero required ap-
proximately 88.14 hours for convergence, while LsAc*-M]
achieved convergence in approximately 51.41hours,
resulting in a time saving of 41.7%. The experimental results
indicate that the training method proposed in this paper
significantly reduces the required training time.

(3) Decision Time Comparison. LsAc*-M] and RL_zero were
each pitted against the model Random in a series of 1000
game rounds, and the average decision time of per hundred
rounds was recorded, as depicted in Figure 13. Across every
hundred rounds, LsAc*-M] required approximately
69.81 minutes, whereas RL_zero needed around
80.60 minutes, representing a 13.38% improvement. The
two-stage training method resulted in a reduction in the
average decision time, enhancing decision speed.

The above experiments demonstrate that the two-stage
training method with expert knowledge guidance incurs
shorter training times and yields superior training outcomes.
The models trained using this approach exhibit faster
decision-making speeds, which is particularly advantageous
for competitive activities with stringent requirements on
decision speed.

5.5. Performance Experiments on the LsAc*-M] Model. To
validate the decision-making capabilities and performance
of LsAc*-M]J, experiments were conducted with three dif-
ferent deep reinforcement learning models: NFSP, DQN,
and Dueling. A comparative analysis between the LsAc*-M]
model and the other three models was carried out based on
metrics such as average win-rate, cumulative score, pa-
rameter size, and training time.

NFSP: A model trained using the NFSP algorithm
(Neural Fictitious Self-Play) provided by RLCard,
combining deep reinforcement learning with self-play.
In RLCard, NFSP can be applied to various card games.

DQN: A model trained using the DQN algorithm
(Deep Q-Network) provided by RLCard. The DQN
algorithm utilizes a deep neural network to approxi-
mate and optimize the Q-value function for decision-
making, and it introduces experience replay to enhance
training stability and convergence speed.
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Dueling: A reinforcement learning model trained using
the DuelingDQN algorithm. The DuelingDQN algo-
rithm builds upon DQN by using two networks to
separately estimate state values and advantage func-
tions, facilitating the learning and decomposition of
state-action Q-values.

Two sets of comparisons were conducted for the ex-
periment. First, the results of the game of LsAc*-MJ and the
three reinforcement learning models against Random were
compared. After that, the game results of LsAc*-MJ and the
three reinforcement learning models were compared sepa-
rately. The specific experimental results and analysis are
shown as follows.

5.5.1. LsAc*-M], NFSP, DQN and Dueling VS. Random.
We engaged the LsAc*-MJ, NFSP, DQN, and Dueling model
in games against the Random model, respectively. In the first
1000 nondraw rounds, we calculated the average win-rate for
each model in the four positions, as shown in Table 7. The
average win-rate of LsAc*-M] is 53.4%, surpassing DQN by
3.1%, Dueling by 3.5%, and outperforming NESP by 26.0%.
The experiments demonstrate that in the same gaming
environment, our model achieves a higher average wining-
rate.

5.5.2. LsAc*-M] VS. NFSP, DQN, and Dueling. The exper-
iments were divided into three groups. The first group
consisted of two LsAc*-M] players and two NFSP players,
the second group had two LsAc*-M] players and two DQN
players, and the third group included two LsAc*-M] players
and two Dueling players. In the first 1000 nondraw rounds,
the cumulative scores for each model in different positions
are illustrated in Figures 14, 15, 16.

Figure 14 illustrates the score evolution of LsAc*-M]J in
positions 1-3 and 2-4 against NFSP as the rounds progress.
With increasing rounds, the score curve of the LsAc*-M]
model steadily rises, reaching a final cumulative score of
1784 points across all four positions. The average win-rate
for each model in the four positions is presented in Table 8.
The model achieved an average win-rate of 71.84% in po-
sitions 1-3, surpassing NFSP by 43.68%, and an average win-
rate of 70.72% in positions 2-4, surpassing NFSP by 41.44%.

Figure 15 illustrates the score variation of LsAc*-M] in
positions 1-3 and 2-4 against DQN as the rounds progress.
Despite fluctuations in the score curve, the LsAc*-M]J model
eventually outperforms DQN with a slight advantage,
achieving a final cumulative score of 128 points across all
four positions.

The average win-rate for each model in the four positions
was computed and is presented in Table 9. The model LsAc*-
M]J achieved win-rate of 53.12% and 51.68% in positions 1-3
and 2-4, respectively, surpassing DQN by 6.25% and 3.35%.

Figure 16 illustrates the score evolution of LsAc*-M] in
positions 1-3 and 2-4 against Dueling as the rounds
progress. Despite fluctuations in the score curve, our model
consistently outperformed the opponent, achieving a final
cumulative score of 240 points across all four positions. The
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FiGure 11: Win-round of LsAc*-M]J or RL_zero (both vs. random).
TABLE 6: Win-rate comparison of LsAc*-MJ or RL_zero vs. random.
Round
Model
100 200 300 400 500 600 700 800 900 1000
LsAc*-MJ (1-3) 0.532 0.505 0.507 0.518 0.518 0.536 0.517 0.511 0.517 0.519
LsAc*-MJ (2-4) 0.562 0.576 0.576 0.546 0.557 0.541 0.537 0.539 0.541 0.536
RL_zero (1-3) 0.502 0.492 0.499 0.468 0.480 0.497 0.509 0.493 0.496 0.508
RL_zero (2-4) 0.587 0.536 0.531 0.523 0.511 0.513 0.516 0.524 0.514 0.523
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FiGURrE 12: Trained time of RL_zero and LsAc*-M]J.

average win-rate for each model in the four positions was
calculated and is presented in Table 10. In positions 1-3 and
2-4, the win-rates were 52.64% and 50.09%, surpassing
Dueling by 5.58% and 1.81%.

During the experiments, we observed that both the
model LsAc*-M] and other models performed weaker in
position 1 compared to positions 2 or 4. However, for the
LsAc*-MJ, when placed in position 1 against the same
opponent combination, the total score remained positive,
surpassing the opponent’s score in position 1 by over 50
points.

RL-zero

FiGure 13: Decision time of RL_zero and LsAc*-M].

The experiments highlighted the significant advantages
of the LsAc*-M] in terms of average win-rate and cumulative
scores. This proves that the proposed method in the paper
can effectively enhance the decision-making capabilities of
Mahjong models.

5.5.3. Network Parameter Size and Time Comparison.
Table 11 provides a comparison of the neural network pa-
rameters and the time required for training for the LsAc*-
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TaBLE 7: Win-rate comparison of LsAc*-MJ, NFSP, DQN, dueling vs. random.

Round
Model
100 200 300 400 500 600 700 800 900 1000
LsAc*-MJ 0.547 0.540 0.542 0.532 0.537 0.538 0.527 0.525 0.529 0.528
NESP 0.301 0.269 0.273 0.270 0.251 0.265 0.275 0.277 0.281 0.283
DQN 0.505 0.491 0.507 0.505 0.502 0.516 0.505 0.499 0.499 0.500
Dueling 0.501 0.508 0.493 0.488 0.493 0.496 0.501 0.501 0.505 0.507
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FiGURE 14: LsAc*-M] vs. NFSP.
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FIGURE 16: LsAc*-MJ vs. dueling.
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TaBLE 8: Win-rate comparison between LsAc*-MJ and NESP.
Round

Model B

100 200 300 400 500 600 700 800 900 1000
LsAc*-MJ (1-3) 0.665 0.718 0.745 0.729 0.729 0.719 0.714 0.719 0.721 0.726
LsAc*-MJ (2-4) 0.685 0.683 0.708 0.706 0.717 0.716 0.712 0.714 0.711 0.720
NESP (1-3) 0.335 0.283 0.255 0.271 0.271 0.281 0.286 0.281 0.279 0.274
NESP (2-4) 0.315 0.318 0.292 0.294 0.283 0.284 0.288 0.286 0.289 0.280

MJ, NFSP, DQN, and Dueling models over 40,000 rounds.
Despite LsAc*-M] having the largest parameter count, its
scale is within the same order of magnitude as other models.
Moreover, it achieves the shortest training time, saving
81.4% of time compared to the DQN that second to last
ranked.

The above experiments demonstrate that our model not
only enhances decision-making capabilities but also reduces
training time, making it a resource-efficient and high-
performance Mahjong model.

5.6. Discussion. The model proposed in the paper utilizes
LSTM networks and an improved A2C algorithm,
employing a two-stage training approach to achieve
a Mahjong gaming model with higher training efficiency and
more accurate decision-making. However, there are certain
limitations in the model.

In addition to unidirectional LSTM networks, LSTM
networks also have bidirectional LSTM networks. From the
theoretical analysis, bidirectional LSTM may have good
results in dealing with Mahjong. However, compared with
bidirectional LSTM, unidirectional LSTM has higher
computational efficiency and faster model convergence,
which we think is more suitable for building models with low
computational resource consumption. In addition, unidi-
rectional LSTM is more consistent with human thinking
logic and more interpretable than bidirectional LSTM.
Therefore, we choose to use the unidirectional LSTM net-
work to build the model.

In addition to LSTM networks, transformers are also
commonly used structures at present. For models and input
sequences of the same scale, LSTM usually has fewer pa-
rameters due to its relatively simple structure. Due to the
existence of self-attention mechanism and feed forward
neural network, the transformer requires more parameters
to implement its self-attention mechanism and position
encoding. Therefore, LSTM may have more advantages in
limited resources. In the following work, we will fully
consider the application prospects and value of transformer
in Mahjong models.

At present, models that represent the top level of
mahjong include Suphx developed by Microsoft and Lucky]
developed by Tencent AI Lab. We chose the model on the
RLcard platform as the benchmark and did not choose the
above model for the following reasons. Firstly, currently
Suphx and Jueyi are both released on the Tenhou, but due to
policy and network restrictions in our region, we are unable
to access the Tenhou and conduct experiments with models
on the platform. Secondly, reproducing Suphx based on

published papers [1] poses great difficulties. The lack of
publicly available datasets and significant computational
resources make reproduction difficult to achieve, and the
quality of reproduction cannot be guaranteed. Thirdly,
papers related to Tencent’s unique skills [2] have proposed
new algorithms for single player Mahjong, but the method
for four player mahjong has not been specifically disclosed,
making it extremely difficult to reproduce. Fourthly, cur-
rently, only some papers using supervised learning [12, 13]
have compared the accuracy of network prediction with
Suphx. However, our model did not adopt supervised
learning, so we cannot compare the network prediction
accuracy with Suphx. Fifthly, the RLcard platform is an
offline reinforcement learning platform designed for card
games, and research results on the use of this platform in
various literature studies include [17, 40, 41]. In addition to
providing a Mahjong gaming environment, the RLcard
platform also provides user-friendly interfaces and repre-
sentative deep reinforcement learning methods such as
NEFSP and DQN. Therefore, we chose the RLcard platform
model as the experimental benchmark.

The reward mechanism used in model training is sim-
plistic, lacking sufficient consideration for the points that
can be obtained, and lacks the setting of wind and rotation
compared to reality. Unlike other card games, Mahjong can
result in a draw, and not every game produces valid rewards.
In experiments where different algorithm models from
RLCard played against Random [17], the draw rate was
above 90%. The statistics presented in the experiments focus
on nondraw results.

In addition, when applying the proposed algorithm and
training method to other Mahjong variants, the model
should be modified for different rules and number of hands.
First, the hand and action encoding is modified according to
the number of tiles in a specific Mahjong variant. For ex-
ample, if it is applied in popular Mahjong, the input di-
mension needs to be modified to 27 * 4. Second, the division
of the action values of the guiding agents during the training
process needs to be modified according to the specific rules
and trained again. For example, for the national standard
mahjong special flower tiles that can increase the score and
also participate in the draw, the rules for handling and
utilizing the flower tiles need to be added. If the above
modifications are not made, especially the adjustment of the
bootstrapping training, the performance of the model will be
lost. In August, 2023, we attempted to directly migrate the
weights of Japanese Mahjong to Chinese popular Mahjong
for game play and only won the second prize at the 2023
Chinese Computer Gaming Championship National
Tournament.
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TABLE 9: Win-rate comparison between LsAc*-MJ and DQN.
Round

Model

100 200 300 400 500 600 700 800 900 1000
LsAc*-MJ (1-3) 0.575 0.543 0.528 0.521 0.525 0.529 0.524 0.523 0.519 0.525
LsAc*-MJ (2-4) 0.535 0.528 0.522 0.524 0.507 0.509 0.516 0.511 0.509 0.507
DQN (1-3) 0.425 0.458 0.472 0.479 0.475 0.471 0.476 0.477 0.481 0.475
DQN (2-4) 0.465 0.473 0.478 0.476 0.493 0.491 0.484 0.489 0.491 0.493

TaBLE 10: Win-rate comparison between LsAc*-MJ and dueling.
Round

Model

100 200 300 400 500 600 700 800 900 1000
LsAc*-MJ (1-3) 0.515 0.528 0.518 0.526 0.523 0.536 0.518 0.531 0.537 0.533
LsAc*-MJ (2-4) 0.485 0.498 0.498 0.499 0.503 0.520 0.519 0.524 0.517 0.527
Dueling (1-3) 0.485 0.473 0.482 0.474 0.477 0.464 0.482 0.469 0.463 0.467
Dueling (2-4) 0.515 0.503 0.502 0.501 0.497 0.480 0.481 0.476 0.483 0.473

TaBLE 11: Comparison of parameters and training time of different models.

Model Parameters Training time (hours)
LsAc*-M] 30.80 x 10* 51.41
DQN 12.111 x 10* 276.97
NFSP 6.05x 10* 355.37
Dueling 4.63 % 10* 1105.21

6. Conclusions

The LsAc*-M] model proposed in the paper uses LSTM
networks to design a Mahjong model. Both the Actor-net
and the Critic-net employ LSTM structures to fully use the
temporal dependence in Mahjong games, leading to im-
proved accuracy in action prediction and evaluation. The
LsAc*-M]J also improves the A2C algorithm through the
experience replay to weaken the correlation between
Mahjong input data, thereby increasing model stability. This
model adopts a two-stage training method to enhance de-
cision accuracy and speed. Extensive experimental results
demonstrate that, compared to Mahjong models constructed
by other reinforcement learning algorithms, our proposed
LsAc*-M] model can rapidly train a Mahjong agent with
higher cumulative scores, even with lower computational
resources. In future work, we plan to gradually refine the
reward mechanism to further improve the training efficiency
of the model and enhance the overall performance of
Mahjong models [42-45].
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