ELIZA—A Computer Program
For the Study of Natural Language
Communication Between Man

And Machine

JosepH WEIZENBATM
Massachusells Institute of Technology,® Cambridge, M ass.

ELIZA is a program operating within the MAC time-sharing
system at MIT which makes certain kinds of natural language
conversation between man and computer possible. Input sen-
tences are analyzed on the basis of decomposition rules which
are triggered by key words appearing in the input text.
Responses are generated by reassembly rules associated with
selected decomposition rules. The fundamental technical prob-
lems with which ELIZA is concerned are: (1) the identification of
key words, (2) the discovery of minimal context, (3) the choice
of appropriate transformations, (4) generation of responses in
the absence of key words, and (5) the provision of an editing
capability for ELIZA “scripts”. A discussion of some psychologi-
cal issues relevant to the ELIZA approach as well as of future
developments concludes the paper.

Introduction

It is said that to explain is to explain away. This maxim
is nowhere so well fulfilled as in the area of computer
programming, espeecially in what is called heuristic pro-
granuning and artifieial intellgence. For in those realms
machines are made to behave in wondrous ways, often
sufficient to dazzle even the most experienced observer.
But once a particular program is unmasked, once its
inner workings are explained in language sufficiently plain
to induce understanding, its magic crumbles away; it
stands revealed as a mere collection of procedures, each
quite comprehensible, The observer says to himself “I
could have written that”. With that thought he moves the
program in question from the shelf marked “intelligent”,
to that reserved for curios, fit to be discussed only with
people less enlightened than he.

Work reported herein wus supported (in partj by Project MAC,
an MIT research program sponsored by the Advanced Research
Projects Ageney, Department of Defense, under Office of Naval
lesearch Contract Number Nonr-4102(01).

* Department of Ileetrical Engineering.

36 Communications of the ACM

utational Lin;

suistics

A. G. OETTINGER, Editor

The object of this paper is o cause just such a re
evaluation of the program about 1o be “explained”. Few
programs ever needed it more.

ELIZA Program

ELIZA is a program which makes natural language
conversation with a computer possible. Ttz present imple-
mentation is on the MAC time-sharing system at AT,
Tt 13 written in MAD-Suip [4] for the IBAL 7094. Tts name
was chosen to emphasize that it may be incrementally
improved by its users, since its language abilities may be
continually improved by a “teacher”. Like the Elza ¢
Pygmalion fame, it can be made to appear even more
civilized, the relation of appearance to reality, however,
remaining in the domain of the playwright.

For the present purpose it is sufficient to characterize
the MAC system as one which permits an individual to
operate a full seale computer from a remotely located type-
writer. The individual operator has the illusion that he i
the sole user of the computer complex, while in fact others
may be “time-sharing” the system with him. What i
important here 1s that the computer can read nessages
typed on the typewriter and respond by writing on the
same instrument, The time between the computer’s
receipt of 1 message and the appearance of its response is
a function of the program controlling the dialogue and of
such MAC system paramecters as the number of users
currently corresponding with the system. These latter
parameters gencrally coniribute so little to the overall
response time that conversational interaction with the
computer need never involve truly intolerable delays.

When in conversation with FLIZA, the user types i
sonme statement or set of statements in natural language
using normal punctuation and sentence structures. Only
the question mark may not be used, because it is inter-
preted as a line delete character by the MAC system. The
user’s statement is terminated by a double carriage return
which serves to turn control over to ELIZA. ELIZA then
analyzes the user’s statement and generates some response
which it types out. Control is then again with the user.

A typical conversation is the following:

Aen are all alike.

IN WHAT WAY

They’re always bugging ns about something or other.
CAN YOU THINK OF A SPECIFIC EXAMPLE
Well, my boviriend made me come here,

YOUR BOYFRIEND MADE YOU COME HERE
He says I'm depressed much of the time.

[ AM SORRY TO HEAR YOU ARE DEPRESSED

Volume 9 / Number 1 / January, 1966


http://crossmark.crossref.org/dialog/?doi=10.1145%2F365153.365168&domain=pdf&date_stamp=1966-01-01

». I am unbappy.
THINK COMING HERE WILL HELP YOU NOT TCQ
NHAPPY
some help, that much seems certain.
WOULD ITMEAN TO YOU IF YOU GOT S0ME ITELP
[ could learn to get along with my mother.
Vi AORE ABOUT YOUR FAMILY
3, other takes care of me.
‘y‘{LH() ELSE IN YOUR FAMILY TAKES CARE OF YOU
Aly father.
YOUR FATHER
v ou are like miy father in some ways.
T RESEMBLANCE DO YOU SLE

WHAT MAKES YOU THINK I AMINOT VERY AGGRESSIVE
You don’t argue with me.

WHY DO YOU THINK I DON'T ARGUE WITH YOU

afraid of me,

1T PLEASE YOU TO BELIEVE I AM AFRAID OF YOU

My fauther is afraid of everybody.

WHAT ELSE COMES TO MIND WHEN YOU THINK OF
YOUR FATHER

Builies.

DOES THAT HAVE ANYTHING TO DO WITH THE FACT
THAT YOUR BOYFRIEND MADE YOU COME HERE

The capitalized lines are the machine responses.

The gross procedure of the program is quite simple; the
text iz read and inspected for the presence of a keyword.
If such a word is found, the seuntence is transformed
according to a rule associated with the keyword, if not a
content-frec remark or, under certain conditions, an earlier
transformation is retrieved. The text so computed or
retrieved is then printed out.

In detail, of course, the procedure sketched above is
considerably more complex. Keywords, {or example, may
have a RANK or precedence number. The procedure is
sensitive to such numbers in that it will abandon a key-
word already found in the left-to-right secan of the text in
favor of one having a higher rank. Also, the procedure
recognizes a comma or a period as a delimiter. Whenever
cither one is encountered and a keyword has already been
found, all subsequent text is deleted from the input mes-
sage. If no key had yet been found the phrase or sentence
to the left of the delimiter (as well as the delimiter itself)
is deleted. As a result, only single phrases or sentences are
ever transformed.

Ikevwords and their associated transformation! rules
constitute the SCRIPT for a particular class of con-
versation. An important property of ELIZA is that a
seript is data; ie., it is not part of the program itself.
Hence, ELIZA is not restricted to a particular set of
recognition patterns or responses, indeed not even to any
specific language. ELIZA scripts exist (at this writing) in
Welsh and German as well as in English.

The fundamental technical problems with which ELIZA
must be preoccupied are the following:

(1) The identification of the “‘most important” keyword

! The word ““transformation” is used in its generic sense rather
than that given it by Harris and Chomsky in linguistic contexts.

Volume 9 / Number 1 / January, 1966

oceurring in the input message.

(2) The identification of some minimal context within
which the chosen keyword appears; e.g., if the keyword is
“you”, is it followed by the word “are” (in which case an
assertion is probably being made).

(3) The choice of an appropriate transformation rule
and, of course, the making of the transformation itself.

(4) The provision of mechanism that will permit
ELIZA to respond “intelligently”” when the input text
contained no keywords.

(5) The provision of machinery that facilitates editing,
particularly extension, of the script on the seript writing
level. ’

There are, of course, the usual constraints dictated by
the need to be economical in the use of computer time and
storage space.

The central issue is clearly one of text manipulation,
and at the heart of that issue is the concept of the trans-
formation rule which has been said to be associated with
certain keywords. The mechanisms subsumed under the
slogan “transformation rule” are a number of Stip func-
tions which serve to (1) decompose a data string according
to certain criteria, hence to test the string as to whether it
satisfies these criteria or not, and (2) to reassemble a
decomposed string according to certain assembly specifica-
tions.

While this is not the place to diseuss these functions in
all their detail (or even to reveal their full power and
generality), it is important to the understanding of the
operation of ELIZA to deseribe them in some detail.

Consider the sentence *“T am very unhappy these days”.
Suppose a foreigner with only a limited knowledge of
Inglish but with a very good ear heard that sentence
spoken but understood only the first two words “I am”.
Wishing to appear interested, perhaps even sympathetic,
he may reply “How long have you been very unhappy
these days?” What he must have done is to apply a kind
of template to the original sentence, one part of which
matched the two words “I am” and the remainder isolated
the words “very unhappy these days”. He must also have
a reassembly kit specifically associated with that template,
one that specifies that any sentence of the form “I am
BLAH” can be transformed to “How long have you been
BLAH”, independently of the meaning of BLAH. A
somewhat more complicated example is given by the
sentence “It seems that you hate me”. Here the foreigner
understands only the words “you” and “me’; ie., he
applies a template that decomposes the sentence into the
four parts:

(1) It seems that {2} vou (3) hate (4) me

of which only the second and fourth parts are understood.
The reassembly rule might then be “What makes you
think I hate you’; ie., it might throw away the first
component, translate the two known words (“you” to
“I? and “me” to “you”) and tack on a stock phrase
{What makes you think) to the front of the reconstruetion.

Communications of the ACM 37



A formal notation in which to represent the decomposition
template is;

(0 YOU 0 ME)

and the reassembly rule
(WHAT MAKES YOU THINK I 3 YOU).

The “0” in the decomposition rule stands for “an in-
definite number of words” (analogous to the indefinite
dollar sign of Comrr) [6] while the “3” in the reassembly
rule indicates that the third component of the subject
decomposition is to be inserted in its place. The decom-
position rule

(0 YOU 1 ME)

would have worked just as well in this specific example. A
nonzero integer “n” appearing in a decomposition rule
indicates that the component in question should consist
of exactly “n’” words. However, of the two rules shown,
only the first would have matched the sentence, “It seems
you hate and love me,” the second failing because there is

more than one word between “you” and ‘“me”.

Dy Ry RyzerRym, D2 RaiRe2 " "Ram, Do Rog Roz e Rome

Fi1c. 1, Keyword and rule list structure

In ELIZA the question of which decomposition rules to
apply to an input text is of course a crucial one. The input
sentence might have been, for example, “It seems that
~ you hate,” in which case the decomposition rule (0 YOU

0 ME) would have failed in that the word “ME” would
not have been found at all, let alone in its assigned place.
Some other decomposition rule would then have to be
tried and, failing that, still another until a match could
be made or a total failure reported. ELIZA must therefore
have a mechanism to sharply delimit the set of decom-
position rules which are potentially applicable to a cur-
rently active input sentence. This is the keyword mecha-
nism.

An input sentence is scanned from left to right. Each
word is looked up in a dictionary of keywords. If a word
is identified as a keyword, then (apart from the issue of
precedence of keywords) only decomposition rules con-
taining that keyword need to be tried. The trial sequence
can even be partially ordered. For example, the decom-
position rule (0 YOU 0) associated with the keyword
“YOU” (and decomposing an input sentence into (1) all
words in front of “YOU”, (2) the word “YOU”, and (3)
all words following “YOQU?”’) should be the last one tried
sinee it is bound to succeed.

Two problems now arise. One stems from the fact that

38 Communications of the ACM

almost none of the words in any given sentence are repre-
sented in the keyword dictionary. The other is that of
“associating” both decomposition and reassembly rules
with keywords. The first is serious in that the determina-
tion that a word is not in a dictionary may well require
more computation (Le., time) than the location of & word
which is represented. The attack on both problems begins
by placing both a keyword and its associated rules on a
list. The basic format of a typical key list is the following:

(K (Dy) (Ry,1) (Br,2) -+ (By,my))
((1?2) (Re, 1) (Ra,9) -+ ({32, my))

(D) Ruot) Ruo) (B )

where K is the keyword, D, the ith decomposition rule
associated with K and R;, ; the jth reassembly rule asso-
ciated with the 7th decomposition rule.

A common pictorial representation of such a structure
is the tree diagram shown in Figure 1. The top level of
this structure contains the keyword followed by the names
of lists; each one of which is again a list structure beginning
with a decomposition rule and followed by reassembly
rules. Since list structures of this type have no predeter-
mined dimensionality limitations, any number of decom-
position rules may be associated with a given keyword and
any number of reassembly rules with any specific decom-
position rule. Surp is rich in functions that sequence over
structures of this type efficiently. Hence programmin
problems are minimized.

An ELIZA script consists mainly of a set of list strue-
tures of the type shown. The actual keyword dictionary is
constructed when such a script is first read into the
hitherto empty program. The basic structural component
of the keyword dictionary is a vector KEY of (currently)
128 contiguous computer words. As a particular key list
structure is read the keyword K at its top is randomized
(hashed) by a procedure that produces (currently) a 7
bit integer ““4’’. The word “always”, for example, yields
the integer 14. KEY(¢), i.e., the 4th word of the vector
KEY, is then examined to determine whether it contains
a list name. If it does not, then an empty list is created,
its name placed in KEY(¢), and the key list structure in
question placed on that list. If KEY (¢) already contains a
list name, then the name of the key list structure is placed
on the bottom of the list named in KEY(z). The largest
dictionary so far attempted contains about 50 keywords.
No list named in any of the words of the KKY vector
contains more than two key list structures.

Every word encountered in the scan of an input text,
i.e., during the actual operations of ELIZA, is randomized
by the same hashing algorithm as was originally applied to
the incoming keywords, hence yields an integer which
points to the only possible list structure which could
potentially contain that word as a keyword. Even then,
only the tops of any key list structures that may be found
there need be interrogated to determine whether or not a
keyword has been found. By virtue of the various list

Volume 9 / Number 1 / January, 1966



ing operations that Spre muakes available, the
dentification of a keyword leaves as its principal
uct a pointer to the list of decomposition (and hence
ly) rules associated with the identified keyword.
: of this strategy is that often less time s required
scover that a given word is not in the kevword die-
mary than to locate it if it is there. However, the location
a keyword vields pointers to all information associated
with that word,

Some conversational protocols require that certain
transformations be made on certain words of the input text
independently of any contextual considerations. The first
conversation displayed in this paper, for example, requires
that first person pronouns be exchanged for second person
pronouns and vice versa throughout the input text. There
may be further transformations but these minimal sub-
stitutions are unconditional. Simple substitution rules
ought not to be elevated to the level of transformations,
nor should the words involved be forced to carry with them
all the structure required for the fully complex case.
Yurthermore, unconditional substitutions of single words
for single words can be accomplished during the text scan
itself, not as a transformation of the entire text subsequent
to scanning. To facilitate the realization of these
desiderata, any word in the key dictionary, i.e., at the
top of a key list structure, may be followed by an equal
sign followed by whatever word is to be its substitute.
Tranformation rules may, but need not, follow. If none
do follow such a substitution rule, then the substitution is
made on the fly, ie:, during text scanning, but the word
in question is not identified as a keyword for subsequent
purposes. Of course, a word may be both subtituted for
and be a keyword as well. An example of a simple sub-
stitution is

(YOURSELF = MYSELF).

Neither “yourself” nor “myself” are keywords in the
particular seript from which this example was chosen.
The fact that keywords can have ranks or precedences
has already been mentioned. The need of a ranking mecha-
nism may be established by an example. Suppose an input
sentence is “I know everybody laughed at me.” A script
may tag the word “I” as well as the word “cverybody”
as a keyword, Without differential ranking, “I’’ occurring
first would determine the transformation to be applied.
A typical response might be “You say you know everybody
laughed at you.” But the important message in the input
sentence begins with the word “everybody”. It is very
often true that when a person speaks in terms of universals
such as “everybody”, “always” and “nobody” he is really
referring to some quite specific event or person. By giving
“everybody” a higher rank than “I”, the response “Who
in particular are you thinking of” may be generated.
The specific mechanism employed in ranking is that the
rank of every keyword encountered (absence of rank
implies rank equals 0) is compared with the rank of the
highest ranked keyword already seen. If the rank of the

Volume 9 / Number 1 / January, 1966

new word is higher than that of any previously encoun-
tered word, the pointer to the transformation rules
associated with the new word is placed on top of a list
called the keystack, otherwise it is placed on the bottom
of the keystack. When the text scan terminates, the key-
stack has at its top a pointer assoclated with the highest
ranked keyword encountered in the scan. The remaining
pointers in the stack may not be monotonically ordered
with respect to the ranks of the words from which they
were derived, but they are nearly so—in any event they
are in a useful and interesting order. Figure 2 is a simpli-

W eNext | / N
.__2 Text word :-—-__—.\ End of mxvﬁ/l———YES
R \ Keysta Delete Wond alf
{ ot F—YES: e ,“ succeeding words
smply from text.
/ iswa Delete W and ait
No— keyword preceediag words
from text.
YES
( is precedence NO
of kay > P
Y5
P+ Precedance rPIuc! painter to key ] Place pointer tokey
of key on top of i on bottom of
keystach 1 keystack
T

Fie. 2. Basic flow diagram of keyword detection

fied flow diagram of keyword detection. The rank of a
keyword must, of course, also be associated with the
keyword. Therefore it must appear on the keyword list
strueture. It may be found, if at all, just in front of the
list of transformation rules associated with the keyword.
As an example consider the word “MY” in a particular
seript. Its keyword list may be as follows:

(MY = YOUR § (transformation rules)).

Such a list would mean that whenever the word “MY” is
encountered in any text, it would be replaced by the word
“YOUR”. Its rank would be 5.

Upon completion of a given text scan, the keystack is
either empty or contains pointers derived from the key-
words found in the text. Each of such pointers is actually a
sequence reader—a SLIP mechanism which facilitates
scanning of lists—pointing into its particular key list in
such a way that one sequencing operation to the right
(SEQLR) will sequence it to the first set of transformation
rules associated with its keyword, i.e., to the list

(D) (Bisy (Ris) ... (Ry, Rumy)).
The top of that list, of course, is a list which serves a

decomposition rule for the subject text. The top of the
lxevﬁtacl\ C()Iltalns the ﬁI‘St pou’ltﬁr to be actlvated

ThC decomposition rule D, associated with the keyword

K, {(D1), K}, is now tried. It may fail however. For
exa.mple, suppose the Input text was:

You are very helpful.

Communications of the ACM 39



The keyword, say, is “‘you”, and {D)), vou} i3
0T remind you of 0;.

{Rceall that the “you” in the original sentence has already
been replaced by “I” in the text now analyzed.) This
decomposition rule obviously falls to mateh the input
sentence. Should (D), Kl faill to find a mateh, then

3y, K} is wried. Should that too fail, {(Dj), K} 1s

(e
RS

attempted, and =0 on. Of course, the set of transformation
rules can be guaranteed to terminate with a decomposition
rule which must mateh, The decomposition rule

O K 0
will match any text in which the word K appears while
(0)

will match any text whatever. However, there are other
ways to leave a particular zet of transformation rules, as
will be shown below. For the present, suppose that some
particular decomposition rule (D;) has matched the input
text. (D)), of course, was found on a list of the form

(DY, )Ry 0) -+ (B, )

Sequencing the reader which 1s presently pointing at
(D;) will retrieve the reassembly rule (R, ;) which may
then be applied to the decomposed input text to vield the
output message.

Consider again the input text

You are very helpful

in which “you” is the only key word. The sentence is
transformed during scanning to

[ are very helpful

{(Dy), you} is “(0 I remind vour of 0)” and fails to match
as already discussed. However, | (D),), vou} is “(0 I are 0)”
and obviously matches the text, decomposing it into the
coustituents

(1) empty ) 1 (31 are (1) veryv helpful.

HIts ), youl is

{(What makes you think [ am 1)
Hence it produces the output text

What makes vou think T am very helpful.
Having produced it, the integer 1 is put in front of (Rs, ;)
=0 that the transformation rule list in question now appears
as

((D)L(Rs, 1) (B2, 2) -+ (Ra, my)).

Next time {(Dy), K} matehes an input text, the reassembly
rule (Rs .) will be applied and the integer 2 will replace
the 1. After (R, ,».,) has been exercised, (Rs, ;) will again
be invoked. Thus, after the system has been in use for a
time, every decomposition rule which has matched some
input text has associated with it an integer which corre-
=ponds to the last reassembly rule used in connection with

40 Communiecations of the ACM

that decompoesition rule. This mechanism insures 1

al the

complete set of reassembly rules associated with a given
decomposition rule is eveled through before any repetitions
oceur.

The system deseribed so far is essentially one which
selects a decomposition rule for the highest ranking key-
word found in an input text, attempts to match that fext
according to that decomposition rule and, failing to make
a match, seleets the next reassembly rule associated with
the matching decomposition rule and applies it to generate
an output text. It is, in other words, a system which, for
the highest ranking keyword of a text, selects a specifie
decomposition and reassembly rule to be used in forming
the output message.

Were the system to remain that simple, then keywords
that required identical sets of transformation rules would
cach require that a copy of these transformation rules be
associated with them. This would be logically sound but
would complicate the task of seript writing and would also
make unnecessary storage demands. There are therefore
special types of decomposition and assembly rules char-
acterized by the appearance of “="" at the top of the
rule list. The word following the equal sign indicates which
new set of transformation rules is to be applied. For ex-

a transformation rule set of the form
((0) (Why do you ask) (Is that an important question) .. .j

which would apply equally well to the keywords “how”
and “when”, The entire keyword list for “how” may
therefore be

(How (=What)j

The keywords “how”, “what” and “when” may thus be
made to form an equivalence class with respect to the
transformation rules which are to apply to them.

In the above example the rule “(=what)” is in the
place of a decomposition rule, although it causes no
decomposition of the relevant text. It may also appear,
however, in the place of a rcassembly rule. For example,
the keyword “am’ may have among others the following

transformation rule set associated with it:
({0 are vou 0) (Do you believe you are 4) ... (=what) . ..)

(It is here assumed that “are” has been substituted for
“am” and “vou” for “I”” in the initial text scan.) Then,
the input text

Am T sick
would elicit either

Do vou believe you are sick
or

Why do vou ask

depending on how many times the general form had
already occurred.
Under still other conditions it may be desirable to

Volume 9 / Number 1 / Januaary, 1966



1 reassembiies

uple, the

far i St IS4
4 with “you”

t. The dictionary entry for

(0 I'm 03 (PRE {T AM 3} {=Y0U

tvoure = I

svhich has the following effect:

(13 Wherever “yvowre” is found in the input text, it is
luced by “I'm”.
3 If “you're” is actually sclected as the regnant

tuent parts, namely, all text in front of the first
enice of “I'm”, the word “Pm” itself, and all text

(3) The reassembly rule beginning with the code
PRIV s encountered and the decomposed text re-
assembled such that the words * I AN appear in front
of the third constituent determined by the earlier de-
composition,

(1) Conlrol is transferred, so to speak, to the trans-
formation rules associated with the keyword “you’”,
where further decompositions cte. are attempted.

It is to be noted that the sct

PRE (I AM 3) (=YOU))
iz logically in the place of a reassembly rule and may
thierefore be one of many reassembly rules associated with
the given decomposition.

Another form of reassembly rule i

INEWEREY)
which s2rves the case in which attempts to match on the
currently regnant kevword are to be given up and the
ceniire decompesition and reassembly process is to start
agnin on the basis of the keyword to be found in the

RREeY

kevstack, Whenever tlus rule is invoked, the top of the
Lkevstack is “popped up” once, ie., the new regnant key-
word recovered and removed from the keystack, and the
entire process reinitiated as if the initial text scan had just
terminated. This mechanism makes it possible to, in effect,
test on key phrasss as opposad to single key words.

A serious problem which remains to be discussed is the
reaction of the system in case no keywords remain to
sorve as transformation triggers. This ean arise either in
caso the keystack is empty when NEWKEY is invoked or
when the input text contained no keywords initially.

The simplest mechanism supplied is in the form of the
special reserved kevword “NONE” which must be part of
any script. The seript writer must assoclate the universally
matching decomposition rule (0) with it and follow this by
as many content-free remarks in the form of transforma-
tion rufes as he pleases. (Examples are: “Please go on”,
“That’s very interesting” and “I see”.)

There is, however, another mechanism which causes the
system to respond more spectacularly in the absence of a
key. The word “MEMORY™ is another reserved pseudo-
keyword. The key list structure associated with it differs

* Volume 9 / Number 1 / January, 1966

from the ordinary one in some respects. An example
jHluminates this point.
Consider the following struecture:
(MEMORY MY
(0 YOUR 0 = LETS DISCUSS FURTHER WHY YOUR 3)
{0 YOUR 0 = EARLIER YOU SAID YOUR 3)

The word “MY"” (which must be an ordinary keyword
as well) has been selected to serve a special function.
Whenever it is the highest ranking keyword of a text one
of the transformations on the MEMORY list is randomly
selected, and a copy of the text is transformed accordingly.
This transformation is stored on a first-in-first-out stack
for later use. The ordinary processes already described are
then carried out. When a text without keywords is en-
countered later and a certain counting mechanism is in a
particular state and the stack in question is not empty,
then the transformed text is printed out as the reply. It
is, of course, also deleted from the stack of such trans-
formations.

The current version of ELIZA requires that one keyword
be associated with MEMORY and that exactly four
transformations accompany that word in that context. (An
application of a transformation rule of the form

(LEFT HAND SIDE = RIGHT HAND SIDE)
is equivalent to the successive application of the two forms
(LEFT HAND SIDE), (RIGHT HAND SIDE).)

Three more details will complete the formal description
of the ELIZA program.

The transformation rule mechanism of Suip is such that
it permits tagging of words in a text and their subsequent
recovery on the basis of one of their tags. The keyword
“MOTHER?” in ELIZA, for cxample, may be identified
as a noun and as a member of the class “family” as follows:

(MOTHER DLIST (/NOUN FAMILY)).

Such tagging in no way interferes with other information
(e.g., rank or transformation rules) which may be asso-
ciated with the given tag word. A decomposition rule may
contain a matching constituent of the form (/TAG1
TAG2 --+-) which will match and isolate a word in the
subject text having any one of the mentioned tags. If, for
example, “MOTHER” is tagged as indicated and the
input text

“CONSIDER MY AGED MOTHER AS WELL AS ME”
subjected to the decomposition rule
(0 YOUR 0 (/FAMILY) 0)

(remembering that “MY” has been replaced by “YOUR”),
then the decomposition would be

(1) CONSIDER  (2) YOUR 3) AGED
(5) AS WELL AS ME.

(4) MOTHER

Another flexibility inherent in the Srip text manipula-
tion mechanism underlying ELIZA is tha or-ing of
matching criteria is permitted in decomposition rules.
The above input text would have been decomposed

Communications of the ACM 41



precisely as stated above by the decomposition rule:

(0 YOUR 0 (xFATHER MOTHER) O)

22

which, by virtue of the prescnce of “+” in the sublist
structure scen above, would have isolated either the word
“FATHER” or “MOTHER” (in that order) in the input
text, whichever oceurred first after the first appearance of
the word “YOUR”.

Tinally, the seript writer must begin his seript with a
list, i.e., a message enclosed in parentheses, which contains
the statement he wishes ELIZA to type when the system
is first loaded. This list may be empty.

Editing of an ELIZA script is achieved via appeal (o a
contextual editing program (ED) which is part of the
MAC library. This program is called whenever the input
text to ELIZA consists of the single word “EDIT”.
ELIZA then puts itself in a so-called dormant state and
presents the then stored script for editing. Detailed
description of ED is out of place here. Suflice it to say that
changes, additions and deletions of the seript may be made
with considerable efficiency and on the basis of entirely
contextual cues, le., without resort to line numbers or
any other artificial devices. When editing is completed,
ED is given the command to FILE the revised seript. The
new script is then stored on the disk and read into ELIZA.
FLIZA then types the word “START” to signal that the
conversation may resume under control of the new script.

An important consequence of the editing facility built
into FLIZA is that a given ELIZA script need not start
out to be a large, full-blown scenario. On the contrary, it
should begin as a quitc modest set of keywords and
transformation rules and permitted to be grown and
molded as experience with it builds up. This appears to
be the best way to use a truly interactive man-machine
facility—i.e., not as a device for rapidly debugging a code
representing a fully thought out solution to a problem, but
rather as an aid for the exploration of problem solving
strategies.

Discussion

At this writing, the only serious ELIZA scripts which
exist are some which cause ELIZA to respond roughly as
would certain psychotherapists (Rogerians). EILIZA
performs best when its human correspondent is initially
instructed to “talk” to 1t, via the typewriter of course,
just as one would to a psychiatrist. This mode of con-
versation was chosen because the psvehiatric interview
is one of the few examples of categorized dyadic natural
language communication in which one of the participating
pair is free to assume the pose of knowing almost nothing
of the real world. If, for example, one were to tell a psy-
chiatrist “I went for a long boat ride’” and he responded
“Tell me about boats”, one would not assume that he knew
nothing about boals, but that he had some purpose in so
directing the subsequent conversation. It is important to
note that thiz assumption is onc made by the speaker.
Whether it is realistic or not s an altogether separate
question. In any case, it has a crucial psychological utility

42 Communications of the ACM

es the speaker to maintain his sense of being
1 =

heard and understood. The ther defends his
impressi ! by

atiributing to his conversational pariner all sorts of back-

ion {which even in real life max be illuso

ground knowledge, insights and reasoning ability. But again,
these are the spegker’s contribution to the conversation.
They manifest themselves inferentially in the tnterpretations
he makes of the offered responsex. From the purely technical
programming point of view theun, the psvehiatvic inferview
form of an ELIZA seript has the advantage that it elimi-
nates the need of storing explicit information about the
real world.

The human speaker will, asx has been =aud, contribute
much to clothe ELIZAS responses in vestments of
plausibility. But he will not defend hix illusion (that he is
being understood) againzit all odds. In human conversation
a speaker will make certain {perhaps generous) azsump-
tions about his conversational partner. As long as it
remains possible to interpret the latter’s responses con-
sistently with those assumptions, the speaker’s image of
his partner remains unchanged, in particular, undamaged.
Responses which are difficult to =0 interpret may well
result in an enhancement of the image of the partner, in
additional rationalizations which then make more com-
plicated interpretations of his responses reasonable.
When, however, such rationalizations become (00 massive
and even self-contradictory, the entire image may erumble
and be replaced by another (‘‘He is not, after all, as smart
as I thought he wag’’). When the conversational partner
is 2 machine (the distinetion between machine and progrant
is here not useful) then the idea of credibilily may well be
substituted for that of plausibility in the above.

With ELIZA as the basic vehicle, experiments may be
set up in which the subjects find it credible to believe that
the responses which appear on his typewriter are gener-
ated by a human sitting at a similar instrument in another
room. How must the seript be written in order to maintain
the eredibility of this idea over a long period of time?
How can the performance of ELIZA be systematically
degraded in order to achieve controlled and predictable
thresholds of credibility in the subjeet? What, in all this,
is the role of the initial instruction to the subject? On the
other hand, suppose the subject is told he is communicating
with a machine. What is he led to believe about the
machine as a result of his conversational experience with
it? Some subjects-have been very hard to convince that
ELIZA (with its present seript) is nol human. This is g
striking form of Turing’s test. What experimental design
would make it more nearly rigorous and airtight?

The whole issue of the credibility (to humans) of
machine output demands Investigation. Important de-
cisions increasingly tend to be made in response to com-
puter output. The ultimately responsible human inter-
preter of “What the machine says” is, not unlike the
correspondent with ELIZA, constantly faced with the
need to make credibility judgments. ELIZA shows, if
nothing else, how easy it is to create and maintain the
iltusion of understanding, hence perhaps of judgment

Volume 9 / Number 1 / January, 1944



deserving of credibility. A certain d - lurks there.
The idea that the present ELIZA script contains no
information about the real world is not entirely true. For

example, the transformation rules which cause the input

Lvervbody hates me
to be transformed to
Can vou think of anvone in particular

and other such are based on quite specific hypotheses about
the world. The whole script constitutes, in a loose way, a
model of certain aspects of the world. The act of writing a
seript is a kind of programming act and has all the advan-
tages of programming, most particularly that it clearly
shows where the programmer’s understanding and com-
mand of his subject leaves off.

A large part of whatever elegance may be credited to
ELIZA lies in the fact that ELIZA maintains the illusion
of understanding with =o little machinery. But there are
bounds on the extendability of ELIZA’s “understanding”
power, which are a function of the ELIZA program itself
and not a function of any seript it may be given. The
crucial test of understanding, as every teacher should
know, is not the subject’s ability to continue a conversa-
tion, but to draw valid conclusions from what he is being
told. In order for a computer program to be able to do
thatf, it must at least have the capacity to store selected
parts of its inputs, ELIZA throws away each of its inputs,
except for those few transformed by means of the
AEMORY machinery. Of course, the problem is more
than one of storage. A great part of it is, in fact, subsumed
under the word “selected” used just above. ELIZA in its
use so far has had as one of ifs principal objectives the
concealment of its lack of understanding. But to encourage
its conversational partner to offer inputs from which it
can select remedial information, it must reveal its mis-
understanding. A switch of objectives from the conceal-
ment to the revelation of misunderstanding iz seen as a
precondition to making an ELIZA-like program the basis
for an effective natural language man-machine com-
munication system.

One goal for an augmented ELIZA program is thus a
system which already has access to a store of information
about some aspeets of the real world and which, by means
of conversational interaction with people, can reveal both
what it knows, i.e., behave as an information retrieval
system, and where its knowledge ends and needs to be
augmented. Hopefully the augmentation of its knowledge
will also be a direct consequence of its conversational
experience. It 1s precisely the prospect that such a program
will converse with many people and learn something from
each of them, which leads to the hope that it will prove an
interesting and even useful conversational partner.

One way to state a slightly different intermediate goal is
to say that ELIZA should be given the power to slowly
build a model of the subject conversing with it. If the
subject mentions that he is not married, for example, and
later speaks of his wife, then ELIZA should be able to

Volume 9 / Number 1 / January, 1966

make the tentative inference that he is either a widower
or divorced. Of course, he could simply be confused. In
the long run, ELIZA should be able to build up a belief
structure (to use Abelson’s phrase) of the subject and on
that basis detect the subject’s rationalizations, contra-
dictions, ete. Conversations with such an ELIZA would
often turn into arguments. Important steps in the realiza-
tion of these goals have already been taken. Most notable
among these 1s Abelson’s and Carroll’s work on simulation
of belief structures {1}.

The script that has formed the basis for most of this

dizscussion happens to be one with an overwhelmingly
psychological orientation. The reason for this has already
been discussed. There 15 a danger, however, that the
example will run away with what it is supposed to illus-
trate. It is useful to remember that the ELIZA program
itself is merely a translating processor in the technical
programming sense. Gorn [2] in a paper on language
systems says:
Given a language which already possesses semantic content, then
a translating processor, even if it operates only syntactically,
generates corresponding expressions of another language to which
we can attribute as “meanings” (possibly multiple—the translator
may not be one to one) the “semantic intents’” of the generating
source expressions; whether we find the result consistent or useful
or both is, of course, another problem. It is quite possible that by
this method the same syntactic object language can be usefully
assigned multiple meanings for each expression . . .

It is striking to note how well his words fit ELIZA. The
“given language” is English as is the “other language”,
expressions of which are generated. In prineiple, the given
language could as well be the kind of English in which
“word problems” in algebra are given to high school
students and the other language, a machine code allowing
a particular computer to “solve” the stated problems.
(See Bobrow’s program STUDENT [3].)

The intent of the above remarks is to further rob ELIZA
of the aura of magic to which its application to psycho-
logical subject matter has to some extent contributed.
Seen in the coldest possible light, ELIZA is a translating
processor in Giorn’s sense; however, it is one which has
been especially constructed to work well with natural
language text.

REFERENCES

1. ABersox, R. P., axp Carrort, J. D. Computer simulation
of individual belief systems. Amer. Behav. Sci. 9 (May 1965},
24-30.

2. Gorx, S. Semiotic relationships in ambiguously stratified
language systems. Paper presented at Int. Collog. Algebraic
Linguistics and Automatic Theory, Hebrew U. of Jerusalem,
Aug. 1964.

3. Boerow, D. G. Natural language input for a computer prob-
lem solving system. Doctoral thesis, Math. Dept., MIT.
Cambridge, Mass., 1964.

4, Weizexsauy, J. Symmetric list processor. Comm. ACM 6,
(Sept. 1963), 524-544.

5. Rocers, C. Client Centered Therapy: Current Practice, Impli-
cations and Theory. Houghton Mifflin, Boston, 1951.

6. Yxave, J. COMIT Programming Manual. MIT Press, Cam-
bridge, Mass., 1961.

Communications of the ACM 43



APPENDIX. An ELIZA Script

({3 ARE

(HOW DO YOU DO. PLEASE TELL ME YOUR PROSLEM) ARE Y0y

START (4OULD YOU PREFER 1% vaua

(SORRY ((0) (PLEASE GON'T APOLIGIZE) FANTASIES) (DO YOU SOf

(APOLOGIES ARE NOT NECESSARY) (WHAT FEELINGS (€0 ARE &) (2iD YOU T

DO YOU HAVE WHEN YOU APOLOGIZE) (i'VE TGLO YoU (WOULD YOU LIKE IT IF THEY W i WHAT LE THEY WERE NOT 33
THAT APOLOGIES ARE NOT REQUIRED))) (POSSIBLY THEY ARE 3)

(DONT = OON'T) (YOUR = MY ({0 MY ¢) Y CONCE MY 3}
(CANT = CAN'T) (WHAT ABOUT YOUR OwWN 3) (ARE YOU WORRIEN ABQUT SOMEGNE ELSES 3)
(WONT = WON'T) (REALLY, MY 3)))

{REMEMBER § (WAS 2 ({0 WAS YOU © )

({0 YOU REMEMBER 0) (DO YOU OFTEN THINK OF &)
(DOES THINKING OF & BRING ANYTHING ELSE TO MIND)
(WHAT ELSE DO YOU REMEMBER)

(WHY DO YQU REMEMBER 4 JUST NOW)

(WHAT IF YOU WERE &) (DO YQU THINX YOU WERE 4)
{WERE YGU k) (WHAT WOUL T MEAN IF YOU WERE u)
(WHAT DCES ' 4 ' SUGGEST TC YOU) (=WHAT))

({0 YOU WAS Q)

WERE YOU REALLY) (WHY DG YOU TELL ME YOU WERE & NOW)
(WHAT IN THE PRESENT SITUATION REMINDS YDU OF &) (H REALLY) (W ’ !
{WERE YOU REALLY)} (WHY DO YOU TELL ME YOU ¥ERE 4 NOW)
(WHAT 1S THE CONNECTION BETWEEN ME AND 4)) CoeRnAPS | Y KNEW YOO WERE 59 )
H ALREADY KNEW YOU WERE
({0 DO t REMEMBER 0) (DID YOU THINK | WOULD FORGET 5)
(€O WAS | 0) (WOGLD YOU LIKE TO BELIEVE t 2&S &)

(WHY DO YOU THINK | SHOULD RECALL S NOW)

(WHAT ABOUT 5) (=WHAT) (YOU MENTIONED 5))

((0) (NEWKEY)))

(IF 3 ((0 IF 0) (DO YOU THINK ITS LIKELY THAT 3) (DO YOU WISH THAT 3)
(WHAT DO YOU THINK ABOUT 3) (REALLY, 2 3)))

(WHAT DO YOU THINK ABQUT 3) (REALLY, 2 3)))

(DREAMT &4 ({0 YOU DREAMT 0)

(REALLY, ) (HAVE YOU EVER FANTASIED 4 WMILE YOU WERE AWAKE)
(HAVE YOU DREAMT 4 BEFORE) (=DREAM) (NEWKFY)))

(DREAMED = DREAMT 4 (=DREAMT})

(DREAM 3 ((0) (WHAT DOES THAT DRFAM SUGGEST TO YOU)

(DO YOU DREAM OFTEN) (WHAT PERSONS APPEAR I[N YOUR DREAMS)
(DON'T YOU BELIEVE THAT DREAM HAS SOMETHING TQ N0 WITH

YOUR PROBLEM) (NEWKEY)))

(DREAMS = DREAM 3 (=DREAM))

{HOW (=WHAT))

(WHEN (=WHAT))

(ALIKE 10 (=DiT))

(WHAT SUGGESTS THAT | 4WAS 4}

(WHAT DO YOU THINK) (PERMAPS | WAS 4)

(WHAT IF | HAD BEEN 4))

((0) (NEWKEY)) )

(WERE = WAS (=WAS))

(ME = YOU)

(YOU'RE = 1'M ({0 I'M 0) (PRE (I ARE 3) (=v0U))))

(1'M = YOU'RE ((0 YOU'RE Q) (PRE (YOU ARE 3) {=1)))}
(MYSELF = YOURSELF)

(YOURSELF = MYSELF)

(MOTHER DLIST(/NOUN FAMILY))

(MOM = MOTHER DLIST(/ FAMILY))

(DAD = FATHER DLIST(/ FAMILY))

(FATHER DLIST(/NOUN FAMILY))

(SISTER DLIST(/FAMILY))

(BROTHER DLIST(/FAMILY)}

(WIFE DLIST(/FAMILY))

(SAME 10 (=DIT)) (CHILDREN DLIST(/FAMILY))

(CERTAINLY (=YES)) e = vou i}
(FEEL NDLIST(/BELIEF)) ({0 YOU (» WANT NEED) 0) (WHAT WOULD IT MEAN TO YOU IF YJU GOT 4)
(THINK DLIST(/BELIEF)) (WHY DO YOU WANT &) (SUPPOSE YOU GCT & SNOM) (WHAT
(BELYEVE DLIST(/BELIEF)) IF YOU NEVER 6OT 4) (WHAT WOULD GETTING & MEAN TO

(WISH DLIST(/BELIEF)) YOU) (WHAT DOES WANTING 4 HAVE TC DO WITH THIS DISCUSSION)
(MEMORY MY (0 YOUR 0 = LETS DISCUSS FURTHER WHY YOUR 3) (€0 YOU ARE O (=SAD UNHAPPY DEPRESSER SICK ) 0)

(0 YOUR 0 = EARLIER YOU SAID YOUR 3) (1 AM SORRY TO HEAR YOU ARE 5) (DO YOU THIMK COMING HERE
(0 YOUR 0 = BUT YOUR 3) WILL HELP YOU NOT TO BE 53 (I'M SURE ITS NCT PLEASANT TO

PLA WHAT MADE U 5))
(0 YOUR 0 = DOES THAT HAVE ANYTHING TO D0 WiTH THE FACT THAT YOUR 3)) BE 5) (CAN YOU EXPLAIN WM B Yo

HAPP D GLAD BETTER ) 0)
(NONE ((D) (1 AM NOT SURE | UNDERSTAND YOU FULLY) ((0 YOU ARE 0 (~HAPPY ELATE 52‘ 8
(PLEASE 60 ON) (HOW HAVE | HELPED YOU TO BE

; MENT MADE YOU 5) (WHAT MAKES YOU § JUST
(WHAT DOES THAT SUGGEST TO YOU) (HAS YOUR TREATM E ¢

U EXPLAIN WHY YOU ARE SUDDENLY 5))
(DO YOU FEEL STRONGLY ABOUT DISCUSSING SUCH THINGS))) Now) (CAN Y°0 A '
(PERHAPS ((0) (YOU DON'T SEEM QUITE CERTAIM) (€0 YOU #AS 0)
H B3
(WHY THE UNCERTAIN TONE) (€0 YOU WAS 0) (=WAS))

CCAN'T YOU BE MORE POSITIVE) ({0 YOU (/BELIEF) YOU 0) (DO YOU REALLY THINK SO) (8UT YOU ARE
(YOU AREN'T SURE) (DON'T YOU KNOW))) NOT SURE YOU 5) (DO YOU REALLY DOUBT YOU 5))

(MAYBE (=PERHAPS)) ({0 YOU O (/BELIEF) 0 I 0) (=YOU))

(NAME 15 ((0) (1 AM NOT INTERESTED IN NAMES) (0 YOU ARE 0)

(I'VE TOLD YOU BEFGRE, | DON'T CARE AROUT NAMES - (1S IT BECAUSE YOU ARE & THAT YOU CAME TO ME)

PLEASE CONTINUE)) ) (HOW LONG HAVE YOU BEEN &)

PLEASE CONTINUE)) ) (DO YOU BELIEVE IT NORMAL TO BE &)

(DEUTSCH (=XFREMD)) (DO YOU ENJOY BEING 4))

(FRANCAIS (=XFREMD)) ((0 YOU (*» CAN'T CANNOT) 0) (HOW DO YOU KNOW YOU CAN'T &)
C(ITALIANO (=XFREMD)) (HAVE YOU TRIED)

(ESPANOL (=XFREMD)) (PERHAPS YOU COULD 4 NOW)

(XFREMD ((0) (1 AM SORRY, | SPEAK ONLY ENGLISH))) (DO YOU REALLY WANT TO BE ABLE TO 4))

(HELLO ((0) (HOW DG YOU DO. PLEASE STATE YOUR PRORLEM))) ((0 YOU DON'T 0)(DON'T YOU REALLY L)(WHY DON'T YOU 4}
(COMPUTER 50 ((0) (DO COMPUTERS WORRY YOU) (DO YOU WISH TO BE ABLE TO 4) (DOES THAT TROUSLE YOU))
(WHY DO YOU MENTION COMPUTERS) (WHAT DO YOU THINK MACHINES ((0 YOU FEEL 0) (TELL ME MORE ABOUT SUCH FEELINGS)

HAVE TO DO WiTH YOUR PROBLEM) (DON'T YOU THINK COMPUTERS CAN (DO YOU OFTEN FEEL &)

HELP PEOPLE) (WHAT ABOUT MACHINES WCRRIES YOU) (WHAT (DO YOU ENJOY FEELING &)

DO YOU THINK AROUT MACHINES))) (OF WHAT DOES FEELING L REMIND YOU))

(4ACHINE 50 (=COMPUTER)) ((0 YOU 0 | 0) (PERHAPS IN YOUR FANTASY WE 3 EACH OTHER)
(MACHINES 50 (=COMPUTER)) (DO YOU WISH TO 3 ME)

(COMPUTERS 50 (=COMPUTER)) (YOU SEEM TO NEED TO 3 ME)

(AM = ARE ((0 ARE YOU 0) (DO YOU BELIEVE YOU ARE 4) (DO YOU 3 ANYONE ELSE))

44, Communications of the ACM Yolume 9 / Number 1 / January, 1966



{HHAT MAXES vD
PLEASE YOU 70 BEt

U SOMETIMES WISH YGCu

RHAPS YOU WOULD LIXE TO
9 YOUY {WHY DG YOU

LIKE TG THINK | 3 YO!

MAKES YOU THINK 1§ 3 you)

13 YGUY (DG YOU WISH

I3 YOU} (DG YOU wWisH

I DID 3 YOU - WHAT wWOuLD T

SOMEONE ELSE BFLIEVE | 3 Yau))

(WE WERE DISCUSSING YOU - HOT ME)

(SH, T 3) (YOU'RE NOT REALLY TALKING AROUT MF = ARE YOU)
HAT ARE YOUR FEELINGS NOW)))

(YES ((0) (YOU SEEM QUITE POSITIVE) (YOU ARF SURE)

(1 SEE) (1 UNDERSTAND)))

(NO ((0) (ARE YOU SAYING 'NO' JUST TO BE NEGATIVE)

{YOU ARE BEING A BIT NEGATIVE) (WHY NOT) (WHY ™o

(MY = YOUR 2 ((D YOUR 0O (/FAMILY) 0)

(TELL ME MORE ABOUT YOUR FAMILY) ( WHD FLSE IN YOUR FAMILY

5) (YOUR &) (WHAT ELSE COMES TC MIND WHEN YOU THINK OF

YOUR &3})

(€5 YOUR 0) (YOUR 3) (WHY DO YOU SAY YOUR 3) (DOES THAT

SUGGEST ANYTHING ELSE WHICH BELONGS TO YOUY} (IS IT

[MPORTANT TC YOU THAT 2 3)))

(CAN ((0 CAN T 0) (YOU BELIEVE | CAN & DON'T YOU) (=WHAT)

(YOU WANT ME TO BE ABLE TO &) (PERMAPS YOU WOULD LIKF TO BF

ABLE TO 4 YOURSELF)) ({0 CAN YOU 0) (WHETHER OR NOT YOU CAN &

DEPENDS ON YOU MORE THAN ON ME) (DO YOU WANT T0 RE ARLE T0 &)

(PERHAPS YOU DON'T WANT TO 4) (=WHAT)))

(WHAT ((3) (WHY DO YOU ASK) (DOES THAT QUESTION INTFREST YOU)

{«HAT 1S IT YOU REALLY WANT TO KNOW)

(ARE SUCH QUESTIONS MUCH ON YOUR MIND)

(4HAT ANSWER WOULD PLEASE YOU MOST)

(WHAT DO YOU THINK) (WHAT COMES TO YOUR MIMD WHFN YOU ASK THAT)

(HAVE YOU ASKED SUCH QUESTION BEFORE)

(HAVE YOU ASKED ANYONE ELSE)))

(BECAUSE ((0) (IS THAT THE REAL RFASON) (NON'T AMY OTHER RFASONS

COME 70 MIND) (DOES THAT REASGN SEEM TO EXPLAIN ANYTHING £LSE)

(4HAT OTHER REASONS MIGHT THERE BE)))

(WHY ({0 WHY DON'T 1 ©0) (DO YOU BELIEVE [ DON'T 5) (PERHAPS |

WILL 5 IN GOOD TIME) (SHOULD YOU S5 YOURSELF) (YOU WANT ME TO 5)

(=WHAT))

(=WHAT))

({6 WHY CAN'T YOU 0) (DO YOU THINK YOU SHOULD BRE ARLF TO 5)

(DO YOU WANT TO BE ABLE TO S) (DC YOU BFLIEVE THIS WILL HELP Ynu

T8 53 (HAVE YOU ANY IDEA WHY YOU CAN'T 5) (=WHAT))

(= WHAT))

(EYERYONE 2 ((0 (= EVERYONE EVERYBOOY NOBODY NOONF) 0 )

(REALLY, 2) (SURELY NOT 2) (CAN YOU THINK OF

ANYONE IN PARTICULAR) (WHO, FOR EXAMPLE) (YOU ARE THINKING OF

A VERY SPECIAL PERSON)

(WHO, MAY 1 ASK) (SOMEONE SPECIAL PERHAPS)

(YOU HAVE A PARTICULAR PERSON 1N MIND, DON'T YOU) (WHO DO YOU

THINK YOU'RE TALKING ABOUT)))

(EVERYBODY 2 (= EVERYONE))

(NOBODY 2 (=EVERYONE))

(NOONE 2 (=EVERYONE))

(ALWAYS 1 ((0) (CAN YOU THINK OF A SPECIFIC EXAMPLE) (WHEN)

(WHAT INCIDENT ARE YOU THINKING OF) (REALLY, ALWAYS)))

(LIKE 10 ((0 (+AM IS ARE WAS) 0 LIKE 0) (=DIT))

((0) (NEWKEY)) )

(DT ((0) (IN WHAT WAY) (WHAT RESEMBLANCE DO YOU SEF)

(WHAT DOES THAT SIMILARITY SUGGEST TO YOU)

(WHAT OTHER CONNECTIONS DO YOU SEE)

(4HAT DO YOU SUPPOSE THAT RESEMBLANCE MEANS)

{WHAT IS THE CONNECTION, DO YOU SUPPOSE)

(COULD THERE REALLY BE SOME CONNECTION)

(HOW)))

O

=}

RECEIVED SEPTEMBER, 1965

Volume 9 / Number 1 / January, 1966

LETTERS—continved from p. 35

The technique consists of translating the code for the letter
()" to the code for the numeral 0 whenever it is encountered in the
input character string. If the string counsists only of items such as
numbers and names and it is necessary to sort alphabetically on
names, the oceurrence of an alphabetic character within a name
fleld is used 1o cause the code for zero to be retranslated to the
code for the letter 0 by a rescan of the characters in the name
field.

f no sorting is required, the retranslation can be avoided, pro-
vided that delimiters such as FORMAT or GO TO are spelled
with zero within the recognizer segment of a translator. It is also

to redefine identifier as

(dentifier) {letter) | {identifier} {digit) |

= {letter:

where it is understood that the letter ““O* is removed from the
standard definition of letter as in Arcor 60. The redefinition per-
mits the inclusion of identifiers such as ODD or OOPS but prevents
the use of an identifier consisting only of the repeated mark O.
This technique requires consistency of use and might result in
chaos in a warehousing operation in which the letter *0” is used
in parts labels with check digits.
L. RicHarp TURNER
NASA Lewis Research Center
’ Cleveland, Okio

i 7 ~
Woémments on a Problem in Concurrent
Programming Control

Dear Editor:

I would like to comment on Mr. Dijkstra’s solution [Solution
of a problem in concurrent programming control. Comm ACM &
(Sept. 1965), 569] to a messy problem that is hardly academic. We
are using it now on a multiple computer complex.

When there are only two computers, the algorithm may be
simplified to the following:

Boolean array 6(0; 1) integer £, 1, j,

comment This is the program for computer ¢, which may be
either 0 or 1, computer j 7 is the other one, 1 or 0;

C0: b (i) := false;

Cl: if k ¢ { then begin

C2: if not b(j) then go to ('2;

else k := i; go to (1 end;
else critical section;;

b{@) := true;

remainder of program;

go to C0;

end

Mr. Dijkstra has come up with a clever solution to a really
practical problem.
Harris Hyman
Munitype
New York, New York

[0 X<}

Communications of the ACM 45



