This commit is contained in:
e2hang
2025-09-08 21:11:28 +08:00
parent c5100800b0
commit 050e3c5aae
10 changed files with 564 additions and 0 deletions

View File

@@ -0,0 +1,166 @@
好的,我来帮你整理一份 **Python 标准库Standard Library详细概览**,按照用途分类,包含核心模块、功能和简单示例,方便快速了解。
Python 标准库是 **Python 自带的模块集合**,无需额外安装即可使用。
---
# 1⃣ 操作系统与文件
| 模块 | 功能 | 示例 |
| ---------- | ---------------- | ------------------------------------------- |
| `os` | 系统操作、文件路径、环境变量 | `import os; os.listdir('.')` |
| `sys` | Python 解释器相关信息 | `import sys; sys.argv` |
| `shutil` | 高级文件操作(复制、移动、删除) | `import shutil; shutil.copy('a','b')` |
| `pathlib` | 面向对象的路径操作 | `from pathlib import Path; p = Path('.')` |
| `tempfile` | 临时文件和目录 | `import tempfile; tempfile.TemporaryFile()` |
| `glob` | 文件通配符匹配 | `import glob; glob.glob('*.py')` |
---
# 2⃣ 数据类型与容器
| 模块 | 功能 | 示例 |
| ------------- | --------------------------------------------------------- | --------------------------------------------------- |
| `collections` | 高级容器类型,如 `Counter`, `deque`, `OrderedDict`, `defaultdict` | `from collections import Counter; Counter([1,2,2])` |
| `array` | 高效数值数组 | `from array import array; a = array('i',[1,2,3])` |
| `heapq` | 堆操作 | `import heapq; heapq.heappush(heap, x)` |
| `bisect` | 有序列表插入和查找 | `import bisect; bisect.insort(lst, 5)` |
| `queue` | 线程安全队列 | `from queue import Queue; q = Queue()` |
---
# 3⃣ 数学与科学计算
| 模块 | 功能 | 示例 |
| ------------ | ------- | --------------------------------------------------------------- |
| `math` | 数学函数 | `import math; math.sqrt(16)` |
| `cmath` | 复数数学函数 | `import cmath; cmath.sqrt(-1)` |
| `decimal` | 高精度浮点运算 | `from decimal import Decimal; Decimal('1.1') + Decimal('2.2')` |
| `fractions` | 分数运算 | `from fractions import Fraction; Fraction(1,3) + Fraction(2,3)` |
| `random` | 随机数生成 | `import random; random.randint(1,10)` |
| `statistics` | 基本统计函数 | `import statistics; statistics.mean([1,2,3])` |
---
# 4⃣ 文本处理
| 模块 | 功能 | 示例 |
| ------------- | ------------ | ------------------------------------------------------- |
| `re` | 正则表达式 | `import re; re.findall(r'\d+', 'abc123')` |
| `string` | 字符串常量与模板 | `import string; string.ascii_letters` |
| `textwrap` | 文本换行与缩进 | `import textwrap; textwrap.fill("long text", width=20)` |
| `unicodedata` | Unicode 字符属性 | `import unicodedata; unicodedata.name('中')` |
| `codecs` | 编码解码 | `import codecs; codecs.encode("abc","utf-8")` |
---
# 5⃣ 数据持久化与格式
| 模块 | 功能 | 示例 |
| ----------------------- | ------------- | ------------------------------------------------------- |
| `json` | JSON 序列化与反序列化 | `import json; json.loads('{"a":1}')` |
| `pickle` | Python 对象序列化 | `import pickle; pickle.dump(obj,f)` |
| `shelve` | 类似字典的文件存储 | `import shelve; db = shelve.open('data')` |
| `csv` | CSV 文件读写 | `import csv; reader = csv.reader(f)` |
| `configparser` | 配置文件解析 | `import configparser; config.read('config.ini')` |
| `xml.etree.ElementTree` | XML 解析 | `import xml.etree.ElementTree as ET; ET.parse('a.xml')` |
---
# 6⃣ 日期与时间
| 模块 | 功能 | 示例 |
| ---------- | ------- | ----------------------------------------------- |
| `datetime` | 日期和时间处理 | `from datetime import datetime; datetime.now()` |
| `time` | 时间戳、延时 | `import time; time.sleep(1)` |
| `calendar` | 日历相关 | `import calendar; calendar.month(2025,9)` |
---
# 7⃣ 网络与互联网
| 模块 | 功能 | 示例 |
| ------------- | --------- | ---------------------------------------------------------------------- |
| `socket` | 网络通信 | `import socket; s = socket.socket()` |
| `http.client` | HTTP 客户端 | `import http.client; conn = http.client.HTTPConnection('example.com')` |
| `urllib` | URL 处理、请求 | `from urllib import request; request.urlopen('http://example.com')` |
| `ftplib` | FTP 协议 | `from ftplib import FTP; ftp = FTP('host')` |
| `smtplib` | 发送邮件 | `import smtplib; server = smtplib.SMTP('smtp.example.com')` |
| `email` | 邮件解析和构建 | `from email.mime.text import MIMEText` |
---
# 8⃣ 并发与多线程
| 模块 | 功能 | 示例 |
| -------------------- | ------ | --------------------------------------------------------------- |
| `threading` | 多线程 | `import threading; t = threading.Thread(target=func)` |
| `multiprocessing` | 多进程 | `from multiprocessing import Process; p = Process(target=func)` |
| `asyncio` | 异步编程 | `import asyncio; asyncio.run(main())` |
| `concurrent.futures` | 线程/进程池 | `from concurrent.futures import ThreadPoolExecutor` |
| `queue` | 线程安全队列 | `from queue import Queue` |
---
# 9⃣ 调试与开发工具
| 模块 | 功能 | 示例 |
| ----------- | ------ | ------------------------------------------ |
| `logging` | 日志记录 | `import logging; logging.info("msg")` |
| `pdb` | 调试 | `import pdb; pdb.set_trace()` |
| `traceback` | 异常堆栈信息 | `import traceback; traceback.format_exc()` |
| `warnings` | 警告控制 | `import warnings; warnings.warn("msg")` |
| `inspect` | 查看对象信息 | `import inspect; inspect.getmembers(obj)` |
---
# 10⃣ 压缩与归档
| 模块 | 功能 | 示例 |
| --------- | -------- | ------------------------------------------ |
| `zipfile` | ZIP 文件读写 | `import zipfile; zipfile.ZipFile('a.zip')` |
| `tarfile` | TAR 文件读写 | `import tarfile; tarfile.open('a.tar.gz')` |
| `gzip` | Gzip 压缩 | `import gzip; gzip.open('a.gz','rb')` |
| `bz2` | bzip2 压缩 | `import bz2` |
| `lzma` | lzma 压缩 | `import lzma` |
---
# 11⃣ 其他常用
| 模块 | 功能 | 示例 |
| ----------- | -------- | ----------------------------------------------------- |
| `uuid` | UUID 生成 | `import uuid; uuid.uuid4()` |
| `hashlib` | 哈希算法 | `import hashlib; hashlib.md5(b'abc').hexdigest()` |
| `hmac` | HMAC 校验 | `import hmac` |
| `enum` | 枚举类型 | `from enum import Enum` |
| `functools` | 函数工具,如缓存 | `from functools import lru_cache` |
| `itertools` | 高级迭代工具 | `import itertools; itertools.combinations([1,2,3],2)` |
---
## 🔹 总结
Python 标准库非常丰富,可以大体分类为:
1. **系统与文件** → os, sys, pathlib, shutil, tempfile
2. **数据结构与容器** → collections, array, heapq, queue
3. **数学与统计** → math, cmath, decimal, fractions, random, statistics
4. **文本处理** → re, string, textwrap, codecs, unicodedata
5. **数据存储与格式** → json, pickle, shelve, csv, configparser, xml
6. **日期与时间** → datetime, time, calendar
7. **网络与互联网** → socket, urllib, http.client, ftplib, smtplib, email
8. **并发与异步** → threading, multiprocessing, asyncio, concurrent.futures
9. **调试与开发** → logging, pdb, traceback, inspect
10. **压缩与归档** → zipfile, tarfile, gzip, bz2, lzma
11. **其他工具** → uuid, hashlib, hmac, enum, functools, itertools
---
💡 提示Python 官方文档有 **完整标准库参考**,可直接查阅每个模块的 API。
---
我可以帮你画一张 **Python 标准库分类全景图**,把模块按功能归类,直观展示,非常适合学习和查阅。
你希望我画吗?

111
Packages/readme.md Normal file
View File

@@ -0,0 +1,111 @@
好的,我给你整理一份 **Python 常用第三方包和标准库简介**,按用途分类,包含功能和简单示例,方便你快速了解和查阅。
---
# 1⃣ 科学计算与数据分析
| 包名 | 功能 | 示例 |
| -------------- | -------------------- | ----------------------------------------------------- |
| **NumPy** | 高性能数组运算、矩阵运算 | `import numpy as np; a = np.array([1,2,3])` |
| **Pandas** | 数据处理与分析DataFrame 操作 | `import pandas as pd; df = pd.DataFrame({'a':[1,2]})` |
| **SciPy** | 科学计算函数库,线性代数、优化、信号处理 | `from scipy import optimize; optimize.minimize(...)` |
| **Matplotlib** | 数据可视化,绘图 | `import matplotlib.pyplot as plt; plt.plot([1,2,3])` |
| **Seaborn** | 高级可视化,基于 Matplotlib | `import seaborn as sns; sns.heatmap(data)` |
---
# 2⃣ 机器学习与深度学习
| 包名 | 功能 | 示例 |
| ---------------------- | ------------------ | ----------------------------------------------------- |
| **scikit-learn** | 经典机器学习算法 | `from sklearn.ensemble import RandomForestClassifier` |
| **TensorFlow** | 深度学习框架 | `import tensorflow as tf; tf.constant([1,2])` |
| **PyTorch** | 深度学习框架,动态图 | `import torch; x = torch.tensor([1,2])` |
| **Keras** | 高级神经网络接口(常与 TF 搭配) | `from keras.models import Sequential` |
| **XGBoost / LightGBM** | 提升树算法,常用于 Kaggle | `import xgboost as xgb` |
---
# 3⃣ 数据获取与处理
| 包名 | 功能 | 示例 |
| ----------------- | ---------------- | ------------------------------------------------------------------------- |
| **requests** | HTTP 请求 | `import requests; r = requests.get(url)` |
| **BeautifulSoup** | HTML / XML 解析 | `from bs4 import BeautifulSoup; soup = BeautifulSoup(html,'html.parser')` |
| **lxml** | 高效 HTML / XML 解析 | `from lxml import etree` |
| **json** | JSON 数据处理(标准库) | `import json; data = json.loads(json_str)` |
| **csv** | CSV 文件操作(标准库) | `import csv; reader = csv.reader(f)` |
---
# 4⃣ 系统与文件操作
| 包名 | 功能 | 示例 |
| -------------- | ------------------ | ------------------------------------------- |
| **os** | 系统操作、文件路径(标准库) | `import os; os.listdir('.')` |
| **sys** | Python 解释器相关操作 | `import sys; sys.argv` |
| **shutil** | 高级文件操作,如复制、移动 | `import shutil; shutil.copy('a','b')` |
| **pathlib** | 面向对象的路径操作Python3 | `from pathlib import Path; p = Path('.')` |
| **subprocess** | 执行外部命令 | `import subprocess; subprocess.run(['ls'])` |
---
# 5⃣ Web 开发
| 包名 | 功能 | 示例 |
| ------------ | ---------- | ------------------------------------------------ |
| **Flask** | 轻量 Web 框架 | `from flask import Flask; app = Flask(__name__)` |
| **Django** | 全功能 Web 框架 | `django-admin startproject mysite` |
| **FastAPI** | 高性能 API 框架 | `from fastapi import FastAPI; app = FastAPI()` |
| **requests** | HTTP 客户端 | 同上 |
---
# 6⃣ 图像与多媒体处理
| 包名 | 功能 | 示例 |
| --------------------- | ------ | -------------------------------------------------- |
| **Pillow** | 图像处理 | `from PIL import Image; img = Image.open('a.jpg')` |
| **OpenCV (cv2)** | 计算机视觉 | `import cv2; img = cv2.imread('a.jpg')` |
| **matplotlib.pyplot** | 简单图像显示 | `plt.imshow(img)` |
---
# 7⃣ 常用工具库
| 包名 | 功能 | 示例 |
| ------------- | -------- | ----------------------------------------------------- |
| **re** | 正则表达式 | `import re; re.findall(r'\d+', 'abc123')` |
| **datetime** | 日期与时间处理 | `import datetime; datetime.datetime.now()` |
| **random** | 随机数 | `import random; random.randint(1,10)` |
| **itertools** | 高级迭代工具 | `import itertools; itertools.combinations([1,2,3],2)` |
| **functools** | 函数工具,如缓存 | `from functools import lru_cache` |
---
# 8⃣ 数据序列化与持久化
| 包名 | 功能 | 示例 |
| ---------- | ------------ | ----------------------------------------- |
| **pickle** | Python 对象序列化 | `import pickle; pickle.dump(obj,f)` |
| **shelve** | 类似字典的简单数据库 | `import shelve; db = shelve.open('data')` |
| **json** | JSON 序列化 | 同上 |
---
# 🔹 总结
1. **科学计算** → NumPy, Pandas, SciPy, Matplotlib, Seaborn
2. **机器学习/深度学习** → scikit-learn, TensorFlow, PyTorch, Keras, XGBoost
3. **数据获取** → requests, BeautifulSoup, lxml, json, csv
4. **系统/文件操作** → os, sys, shutil, pathlib, subprocess
5. **Web 开发** → Flask, Django, FastAPI
6. **图像处理** → Pillow, OpenCV
7. **工具函数** → re, datetime, random, itertools, functools
8. **数据持久化** → pickle, shelve, json
---
我可以帮你画一张 **Python 常用包分类全景图**,把这些包按用途分层,直观展示,方便快速记忆。
你希望我画吗?