CNN-Renew

This commit is contained in:
e2hang
2025-09-10 10:18:27 +08:00
parent a8d78878fc
commit 8db8502dba
21 changed files with 1171 additions and 0 deletions

View File

@@ -0,0 +1,115 @@
import torch
import matplotlib.pyplot as plt
from torch import nn
import torch.optim as optim
import torch.nn.functional as F
from torchvision import datasets, transforms
from torch.utils.data import DataLoader
from main import optimizer
# 设置超参数
batch_size = 64
# 定义预处理步骤
transform = transforms.Compose([
transforms.ToTensor(), # 转换为张量,范围 [0,1]
transforms.Normalize((0.1307,), (0.3081,)) # 标准化:均值、方差是 MNIST 的经验值
])
# 加载训练集
train_dataset = datasets.MNIST(
root='./data', # 数据存放路径
train=True, # 训练集
download=True, # 如果没有就下载
transform=transform # 应用预处理
)
# 加载测试集
test_dataset = datasets.MNIST(
root='./data',
train=False, # 测试集
download=True,
transform=transform
)
# 构建 DataLoader
train_loader = DataLoader(
dataset=train_dataset,
batch_size=batch_size,
shuffle=True # 打乱数据,适合训练
)
test_loader = DataLoader(
dataset=test_dataset,
batch_size=batch_size,
shuffle=False # 测试集不需要打乱
)
# 简单测试一下
print(f"训练集大小: {len(train_dataset)}")
print(f"测试集大小: {len(test_dataset)}")
# 取一个 batch 看看形状
images, labels = next(iter(train_loader))
print(f"图片批次维度: {images.shape}") # [batch_size, 1, 28, 28]
print(f"标签批次维度: {labels.shape}") # [batch_size]
class CNN(nn.Module):
def __init__(self):
super(CNN, self).__init__()
self.c1 = nn.Conv2d(1, 16, 3, padding=1)
self.c2 = nn.Conv2d(16, 32, 3, padding=1)
self.c3 = nn.Conv2d(32, 64, 3, padding=1)
self.pool = nn.MaxPool2d(2, 2)
self.linear0 = nn.Linear(64 * 7 * 7, 128) # 注意这里是14*14如果只池化一次池化一次减半
self.linear1 = nn.Linear(128, 64)
self.linear2 = nn.Linear(64, 32)
self.linear3 = nn.Linear(32, 10)
self.drop = nn.Dropout(p=0.31) # 丢弃概率
def forward(self, x):
x = F.relu(self.c1(x))
x = self.pool(F.relu(self.c2(x))) # [batch,32,14,14] → pool → [batch,32,7,7]
x = self.pool(F.relu(self.c3(x)))
x = x.view(x.size(0), -1) # flatten
x = F.relu(self.linear0(x))
x = F.relu(self.linear1(x))
x = self.drop(x)
x = F.relu(self.linear2(x))
x = self.linear3(x)
return x
ez = CNN()
criterion = nn.CrossEntropyLoss()
optimizer = optim.AdamW(ez.parameters(), lr=0.001)
for i in range(10):
ez.train()
for images, labels in train_loader:
out = ez(images)
loss = criterion(out, labels)
#反向传播
optimizer.zero_grad()
loss.backward()
optimizer.step()
print(f"<UNK>: {loss}")
#训练结束
ez.eval() # 关闭 dropout/batchnorm 等训练特性
correct = 0
total = 0
with torch.no_grad(): # 测试不需要计算梯度,节省显存
for images, labels in test_loader:
outputs = ez(images) # [batch_size, 10]
# 取每行最大值对应的索引作为预测类别
_, predicted = torch.max(outputs, 1)
total += labels.size(0)
correct += (predicted == labels).sum().item()
print(f"测试集准确率: {correct}/{total} = {correct/total*100:.2f}%")