Pytorch Added

This commit is contained in:
e2hang
2025-09-09 15:10:57 +08:00
parent a74884a555
commit a5fdeaf70e
20 changed files with 1307 additions and 2 deletions

3
Pytorch/tensor/.idea/.gitignore generated vendored Normal file
View File

@@ -0,0 +1,3 @@
# 默认忽略的文件
/shelf/
/workspace.xml

View File

@@ -0,0 +1,3 @@
<component name="ProjectDictionaryState">
<dictionary name="project" />
</component>

View File

@@ -0,0 +1,7 @@
<component name="InspectionProjectProfileManager">
<settings>
<option name="PROJECT_PROFILE" value="Default" />
<option name="USE_PROJECT_PROFILE" value="false" />
<version value="1.0" />
</settings>
</component>

7
Pytorch/tensor/.idea/misc.xml generated Normal file
View File

@@ -0,0 +1,7 @@
<?xml version="1.0" encoding="UTF-8"?>
<project version="4">
<component name="Black">
<option name="sdkName" value="eflow" />
</component>
<component name="ProjectRootManager" version="2" project-jdk-name="eflow" project-jdk-type="Python SDK" />
</project>

8
Pytorch/tensor/.idea/modules.xml generated Normal file
View File

@@ -0,0 +1,8 @@
<?xml version="1.0" encoding="UTF-8"?>
<project version="4">
<component name="ProjectModuleManager">
<modules>
<module fileurl="file://$PROJECT_DIR$/.idea/tensor.iml" filepath="$PROJECT_DIR$/.idea/tensor.iml" />
</modules>
</component>
</project>

8
Pytorch/tensor/.idea/tensor.iml generated Normal file
View File

@@ -0,0 +1,8 @@
<?xml version="1.0" encoding="UTF-8"?>
<module type="PYTHON_MODULE" version="4">
<component name="NewModuleRootManager">
<content url="file://$MODULE_DIR$" />
<orderEntry type="jdk" jdkName="eflow" jdkType="Python SDK" />
<orderEntry type="sourceFolder" forTests="false" />
</component>
</module>

6
Pytorch/tensor/.idea/vcs.xml generated Normal file
View File

@@ -0,0 +1,6 @@
<?xml version="1.0" encoding="UTF-8"?>
<project version="4">
<component name="VcsDirectoryMappings">
<mapping directory="$PROJECT_DIR$/../.." vcs="Git" />
</component>
</project>

View File

@@ -0,0 +1,24 @@
import numpy as np
import torch
a = np.array([1, 2, 3, 10, 9, 8, 7, 6, 5, 4])
b = torch.from_numpy(a)
print(b)
c = torch.arange(10)
print(c)
print(c.dtype, c.layout, c.device)
d = int(c.matmul(b))
#不写int是tensor(274)
e = c * b
print(d, e)
#in-place与广播
a1 = torch.tensor([1,1,3])
a2 = torch.tensor([1])#右对齐
a3 = torch.add(a1, a2)
print(a3, a3.layout)
#比较
print(torch.ge(a1, a2), torch.ne(a1, a2))

View File

@@ -0,0 +1,29 @@
import torch
a = torch.tensor(([[[[0., 0., 0.],
[0., 0., 0.]],
[[0., 1., 0.],
[0., 0., 0.]]],
[[[0., 2., 0.],
[0., 0., 0.]],
[[0., 3., 0.],
[0., 0., 0.]]]]))
print(a)
b = torch.tensor([[3., 2., 1.], [1., 2., 3.]])
c = torch.tensor([[1., 2., 3.], [4., 5., 6.]])
print(b)
times = b * c
print(times)
print(times.type())
c = torch.normal(mean=1.0, std=torch.rand(5, 5))
print(c)
d = torch.randperm(10)
print(d)

0
Pytorch/tensor/main.py Normal file
View File

205
Pytorch/tensor/readme.md Normal file
View File

@@ -0,0 +1,205 @@
好的 😄,我给你整理一个 **PyTorch `tensor` 使用大全**,覆盖创建、操作、转换、计算等常用方法。为了系统化,我会按类别来整理,并给简单示例。
---
# 🟢 1. 创建 Tensor
```python
import torch
# 直接从数据创建
a = torch.tensor([1, 2, 3], dtype=torch.float32)
# 全 0 / 全 1 / 全某数
b = torch.zeros(3, 4)
c = torch.ones(2, 5) * 7
# 随机数
d = torch.rand(3, 3) # 0~1 均匀分布
e = torch.randn(3, 3) # 标准正态分布
# 类似 numpy 的 arange / linspace
f = torch.arange(0, 10, 2) # 0,2,4,6,8
g = torch.linspace(0, 1, steps=5) # 0,0.25,0.5,0.75,1
# 空 tensor占位
h = torch.empty(2, 3)
```
---
# 🟢 2. Tensor 属性
```python
x = torch.randn(2, 3)
x.shape # 返回 (2,3)
x.size() # 等同 shape
x.dtype # 数据类型,如 torch.float32
x.device # 运行设备,如 cpu 或 cuda:0
x.numel() # 元素总数
x.requires_grad_(True) # 设置是否需要梯度
```
---
# 🟢 3. Tensor 运算
### 3.1 基本算术
```python
a = torch.tensor([1,2,3])
b = torch.tensor([4,5,6])
c = a + b
d = a - b
e = a * b
f = a / b
g = a ** 2
```
### 3.2 矩阵运算
```python
A = torch.rand(2,3)
B = torch.rand(3,2)
C = torch.matmul(A, B) # 矩阵乘法
D = A @ B # 等价写法
E = A.T # 转置
```
### 3.3 统计函数
```python
x = torch.tensor([[1,2],[3,4]], dtype=torch.float32)
x.sum() # 所有元素求和
x.mean() # 平均值
x.max() # 最大值
x.min() # 最小值
x.argmax() # 最大值索引
x.argmin() # 最小值索引
x.std() # 标准差
x.var() # 方差
```
---
# 🟢 4. Tensor 索引与切片
```python
x = torch.tensor([[1,2,3],[4,5,6]])
x[0] # 第一行
x[:,1] # 第二列
x[0,2] # 第一行第三列
x[1,:2] # 第二行前两列
x[-1,-1] # 最后一个元素
```
---
# 🟢 5. Tensor 改变形状
```python
x = torch.arange(12)
y = x.view(3,4) # 改变形状 (reshape)
z = x.reshape(3,4) # reshape 等同 view但更安全
w = x.unsqueeze(0) # 增加维度
v = x.squeeze() # 删除维度为1的维
t = x.transpose(0,0) # 交换维度
```
---
# 🟢 6. Tensor 拼接与拆分
```python
a = torch.randn(2,3)
b = torch.randn(2,3)
# 拼接
c = torch.cat([a,b], dim=0) # 纵向拼接
d = torch.cat([a,b], dim=1) # 横向拼接
# 堆叠(增加新维度)
e = torch.stack([a,b], dim=0)
# 拆分
f1, f2 = torch.chunk(c, 2, dim=0) # 按行拆成两块
```
---
# 🟢 7. Tensor 类型转换
```python
x = torch.tensor([1,2,3], dtype=torch.int32)
x.float() # 转 float
x.double() # 转 double
x.long() # 转 int64
x.bool() # 转 bool
```
---
# 🟢 8. Tensor 与 NumPy 互转
```python
import numpy as np
a = torch.tensor([1,2,3])
b = a.numpy() # Tensor → numpy array
c = np.array([4,5,6])
d = torch.from_numpy(c) # numpy → Tensor
```
⚠️ 注意:共享内存,如果修改其中一个,另一个也会变。
---
# 🟢 9. GPU 操作
```python
x = torch.randn(2,3)
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
x = x.to(device)
y = torch.tensor([1,2,3], device=device) # 直接在 GPU 上创建
```
---
# 🟢 10. 自动求导(梯度)
```python
x = torch.tensor([2.0,3.0], requires_grad=True)
y = x ** 2 + 3*x
z = y.sum()
z.backward() # 自动求梯度
print(x.grad) # dx
```
---
# 🟢 11. 常用函数速查
| 类别 | 常用函数 |
| ---- | --------------------------------------------- |
| 线性代数 | `matmul`, `mm`, `bmm`, `einsum` |
| 激活函数 | `relu`, `sigmoid`, `tanh`, `softmax` |
| 聚合函数 | `sum`, `mean`, `max`, `min`, `prod`, `cumsum` |
| 比较函数 | `eq`, `ne`, `gt`, `lt`, `ge`, `le` |
| 随机函数 | `rand`, `randn`, `randint`, `randperm` |
| 其他 | `clone`, `detach`, `item`, `expand`, `repeat` |
---
如果你需要,我可以帮你整理一个 **可直接拷贝的 PyTorch Tensor 使用小抄(含示例和用法备注)**,适合放在屏幕边上快速查。
你希望我帮你整理吗?