Reinforcement Learning
This commit is contained in:
114
Pytorch/Project/CartPole/AddBuffer.py
Normal file
114
Pytorch/Project/CartPole/AddBuffer.py
Normal file
@@ -0,0 +1,114 @@
|
||||
from collections import deque
|
||||
import numpy as np
|
||||
import random
|
||||
import torch
|
||||
import torch.optim as optim
|
||||
import torch.nn as nn
|
||||
import gymnasium as gym
|
||||
import torch.nn.functional as F
|
||||
|
||||
|
||||
class DQN(nn.Module):
|
||||
def __init__(self, state_size, action_size):
|
||||
super(DQN, self).__init__()
|
||||
self.l1 = nn.Linear(state_size, 128)
|
||||
self.l2 = nn.Linear(128, 32)
|
||||
self.l4 = nn.Linear(32, action_size)
|
||||
|
||||
def forward(self, x):
|
||||
x = F.relu(self.l1(x))
|
||||
x = F.relu(self.l2(x))
|
||||
x = self.l4(x)
|
||||
return x
|
||||
|
||||
lr = 0.001
|
||||
gamma = 0.99
|
||||
epsilon = 1.0
|
||||
memory = deque(maxlen=1000000)
|
||||
batch_size = 64
|
||||
epsilon_decay = 0.995
|
||||
epsilon_min = 0.01
|
||||
|
||||
env = gym.make('CartPole-v1')
|
||||
state_size = env.observation_space.shape[0]
|
||||
action_size = env.action_space.n
|
||||
|
||||
|
||||
ez = DQN(state_size, action_size)
|
||||
optimizer = optim.Adam(ez.parameters(), lr=lr)
|
||||
criterion = nn.MSELoss()
|
||||
|
||||
def replay():
|
||||
if(len(memory) < batch_size):
|
||||
return
|
||||
|
||||
#随机选一组64个训练
|
||||
batch = random.sample(memory, batch_size)
|
||||
states, actions, rewards, next_states, dones = zip(*batch)
|
||||
states = torch.from_numpy(np.stack(states)) # 直接把 batch 堆成 array 再转 tensor
|
||||
next_states = torch.from_numpy(np.stack(next_states))
|
||||
rewards = torch.from_numpy(np.array(rewards, dtype=np.float32))
|
||||
actions = torch.from_numpy(np.array(actions, dtype=np.int64))
|
||||
dones = torch.from_numpy(np.array(dones, dtype=np.float32))
|
||||
|
||||
q_values = ez(states).gather(1, actions.unsqueeze(1)).squeeze()
|
||||
next_q_values = ez(next_states).max(1)[0]
|
||||
target = rewards + gamma * next_q_values * (1 - dones)
|
||||
|
||||
loss = criterion(q_values, target.detach())
|
||||
optimizer.zero_grad()
|
||||
loss.backward()
|
||||
optimizer.step()
|
||||
|
||||
for e in range(350):
|
||||
state, _ = env.reset()
|
||||
done = False
|
||||
total_reward = 0
|
||||
while not done:
|
||||
if random.random() < epsilon:
|
||||
action = env.action_space.sample()
|
||||
else:
|
||||
action = ez(torch.tensor(state, dtype=torch.float32)).argmax().item()
|
||||
|
||||
next_state, reward, terminated, truncated, _ = env.step(action)
|
||||
done = terminated or truncated
|
||||
# 在存储到 memory 时:
|
||||
memory.append((np.array(state, dtype=np.float32),
|
||||
action,
|
||||
reward,
|
||||
np.array(next_state, dtype=np.float32),
|
||||
done))
|
||||
state = next_state
|
||||
total_reward += reward
|
||||
replay()
|
||||
|
||||
epsilon = max(epsilon * epsilon_decay, epsilon_min)
|
||||
print(f"Episode {e + 1}: Reward = {total_reward}")
|
||||
|
||||
torch.save(ez.state_dict(), "cartpole_dqn.pth")
|
||||
print("Model saved to cartpole_dqn.pth")
|
||||
|
||||
# 测试函数
|
||||
def test_agent(env, model, episodes=10):
|
||||
env = gym.make('CartPole-v1', render_mode='human')
|
||||
total_rewards = []
|
||||
for ep in range(episodes):
|
||||
state, _ = env.reset()
|
||||
done = False
|
||||
total_reward = 0.0
|
||||
while not done:
|
||||
# 关闭梯度计算,加速
|
||||
with torch.no_grad():
|
||||
action = model(torch.tensor(state, dtype=torch.float32)).argmax().item()
|
||||
next_state, reward, terminated, truncated, _ = env.step(action)
|
||||
done = terminated or truncated
|
||||
state = next_state
|
||||
total_reward += reward
|
||||
total_rewards.append(total_reward)
|
||||
print(f"Test Episode {ep+1}: reward = {total_reward}")
|
||||
|
||||
avg_reward = sum(total_rewards) / episodes
|
||||
print(f"Average reward over {episodes} episodes: {avg_reward}")
|
||||
|
||||
# 调用测试
|
||||
test_agent(env, ez, episodes=10)
|
Reference in New Issue
Block a user