import gymnasium as gym import random import torch import torch.optim as optim import torch.nn.functional as F import torch.nn as nn import time # 创建环境 #env = gym.make("CartPole-v1", render_mode="human") # human模式会用pyglet显示窗口 env = gym.make('CartPole-v1') # 重置环境 observation, info = env.reset() print("初始观察值:", observation) #记住DQN训练的是Q*,输出的也是Q*,而不是动作,动作要根据Q*判断并反馈 class DQN(nn.Module): def __init__(self, state_size, action_size): super(DQN, self).__init__() self.l1 = nn.Linear(state_size, 128) self.l3 = nn.Linear(128, 64) self.l4 = nn.Linear(64, 32) self.l5 = nn.Linear(32, action_size) def forward(self, x): x = F.relu(self.l1(x)) x = F.relu(self.l3(x)) x = F.relu(self.l4(x)) x = self.l5(x) return x #定义参数 epsilon = 0.95 state_size = env.observation_space.shape[0] action_size = env.action_space.n gamma = 0.99 lrs = 0.005 epsilon_decay = 0.995 epsilon_min = 0.01 batch_size = 64 #memory = deque(maxlen=10000) num_episodes = 500 #初始化 ez = DQN(state_size, action_size) optimizer = optim.Adam(ez.parameters(), lr = lrs) criterion = nn.MSELoss() #训练 for i in range(500): state, _ = env.reset() # gym >=0.26 返回 (obs, info) total_reward = 0.0 done = False while not done: # ε-greedy 选择动作 if random.random() < epsilon: action = env.action_space.sample() else: action = ez(torch.tensor(state, dtype=torch.float32)).argmax().item() # 与环境交互 next_state, reward, terminated, truncated, _ = env.step(action) done = terminated or truncated total_reward += reward # 计算 Q(s, a) q_values = ez(torch.tensor(state, dtype=torch.float32)) now_Q = q_values[action] # 计算 target next_q_value = ez(torch.tensor(next_state, dtype=torch.float32)).max().item() target_Q = reward + gamma * next_q_value * (0 if done else 1) # 计算损失 target_Q = torch.tensor(target_Q, dtype=torch.float32) loss = criterion(now_Q, target_Q) # 更新网络 optimizer.zero_grad() loss.backward() optimizer.step() # 状态更新 state = next_state print(f"Episode {i}, total_reward = {total_reward}") # 测试函数 def test_agent(env, model, episodes=10): total_rewards = [] for ep in range(episodes): state, _ = env.reset() done = False total_reward = 0.0 while not done: # 关闭梯度计算,加速 with torch.no_grad(): action = model(torch.tensor(state, dtype=torch.float32)).argmax().item() next_state, reward, terminated, truncated, _ = env.step(action) done = terminated or truncated state = next_state total_reward += reward total_rewards.append(total_reward) print(f"Test Episode {ep+1}: reward = {total_reward}") avg_reward = sum(total_rewards) / episodes print(f"Average reward over {episodes} episodes: {avg_reward}") # 调用测试 test_agent(env, ez, episodes=10) #最佳数据:平均150