import torch import matplotlib.pyplot as plt from torch import nn import torch.optim as optim from torchvision import datasets, transforms from torch.utils.data import DataLoader from main import optimizer # 设置超参数 batch_size = 64 # 定义预处理步骤 transform = transforms.Compose([ transforms.ToTensor(), # 转换为张量,范围 [0,1] transforms.Normalize((0.1307,), (0.3081,)) # 标准化:均值、方差是 MNIST 的经验值 ]) # 加载训练集 train_dataset = datasets.MNIST( root='./data', # 数据存放路径 train=True, # 训练集 download=True, # 如果没有就下载 transform=transform # 应用预处理 ) # 加载测试集 test_dataset = datasets.MNIST( root='./data', train=False, # 测试集 download=True, transform=transform ) # 构建 DataLoader train_loader = DataLoader( dataset=train_dataset, batch_size=batch_size, shuffle=True # 打乱数据,适合训练 ) test_loader = DataLoader( dataset=test_dataset, batch_size=batch_size, shuffle=False # 测试集不需要打乱 ) # 简单测试一下 print(f"训练集大小: {len(train_dataset)}") print(f"测试集大小: {len(test_dataset)}") # 取一个 batch 看看形状 images, labels = next(iter(train_loader)) print(f"图片批次维度: {images.shape}") # [batch_size, 1, 28, 28] print(f"标签批次维度: {labels.shape}") # [batch_size] # 从训练集中取一个 batch images, labels = next(iter(train_loader)) ''' # 画前 9 张图 fig, axes = plt.subplots(3, 3, figsize=(6, 6)) for i, ax in enumerate(axes.flat): img = images[i].squeeze().numpy() # [1,28,28] -> [28,28] label = labels[i].item() ax.imshow(img, cmap="gray") ax.set_title(f"Label: {label}") ax.axis("off") plt.tight_layout() plt.show() ''' ez = nn.Sequential( nn.Linear(28 * 28, 256), nn.ReLU(), nn.Linear(256, 100), nn.ReLU(), nn.Linear(100, 10), ) criterion = nn.CrossEntropyLoss() optimizer = optim.Adam(ez.parameters(), lr=0.002) for images, labels in train_loader: images = images.view(images.size(0), -1) # [batch_size, 28*28] out = ez(images) loss = criterion(out, labels) #反向传播 optimizer.zero_grad() loss.backward() optimizer.step() print(f": {loss}") #训练结束 ez.eval() # 关闭 dropout/batchnorm 等训练特性 correct = 0 total = 0 with torch.no_grad(): # 测试不需要计算梯度,节省显存 for images, labels in test_loader: images = images.view(images.size(0), -1) # flatten outputs = ez(images) # [batch_size, 10] # 取每行最大值对应的索引作为预测类别 _, predicted = torch.max(outputs, 1) total += labels.size(0) correct += (predicted == labels).sum().item() print(f"测试集准确率: {correct}/{total} = {correct/total*100:.2f}%")