Files
python/Pytorch/Project/ez0/noise.py
2025-09-10 10:18:27 +08:00

56 lines
1.2 KiB
Python

import torch
import torch.nn as nn
import numpy as np
import matplotlib.pyplot as plt
from torch import optim
# x 张量
x = torch.linspace(-10, 10, 100).unsqueeze(1)
# 特征矩阵
X = torch.cat([x, x**2, x**3, torch.sin(2*x)], dim=1)
# 高斯噪声
noise = torch.from_numpy(np.random.normal(0, 3, size=x.shape)).float()
# 带噪声的 y
y_noisy = 0.5 * x**3 - 2 * x**2 + 3*x + 5 + 4 * torch.sin(2*x) + noise
# 可视化
'''
plt.scatter(x, y_noisy, label="Noisy data")
plt.plot(x, 0.5 * x**3 - 2 * x**2 + 3*x + 5 + 4 * torch.sin(2*x), color='red', label="Original function")
plt.legend()
plt.show()
'''
ez = nn.Sequential(
nn.Linear(4, 8),
nn.ReLU(),
nn.Linear(8, 4),
nn.ReLU(),
nn.Linear(4, 1),
)
criterion = nn.MSELoss()
optimizer = optim.Adam(ez.parameters(), lr=0.0065)
for i in range(10000):
#向前传播
out = ez(X)
loss = criterion(out, y_noisy)
#反向传播
optimizer.zero_grad()
loss.backward()
optimizer.step()
if i % 100 == 0:
print("Step:", i, "loss =", loss.item())
with torch.no_grad():
y_pred = ez(X)
plt.scatter(x.numpy(), y_noisy.numpy(), alpha=0.3, label="Noisy data")
plt.plot(x.numpy(), y_pred.numpy(), color='red', label="NN prediction")
plt.legend()
plt.show()