This commit is contained in:
e2hang
2025-10-28 22:29:54 +08:00
parent 92f942901f
commit 7673cc9279
8 changed files with 0 additions and 0 deletions

View File

@@ -0,0 +1,176 @@
import os
import torch
import torch.nn as nn
from torchvision import transforms, utils
from torch.utils.data import DataLoader
from torchvision.datasets import ImageFolder
from tqdm import tqdm
import torch.multiprocessing
# ----------------------------
# 1. 判别器
# ----------------------------
class Detector(nn.Module):
def __init__(self):
super(Detector, self).__init__()
self.model = nn.Sequential(
# 3 x 64 x 64 -> 64 x 32 x 32
nn.Conv2d(3, 64, 4, 2, 1, bias=False),
nn.LeakyReLU(0.2, inplace=True),
# 64 x 32 x 32 -> 128 x 16 x 16
nn.Conv2d(64, 128, 4, 2, 1, bias=False),
nn.BatchNorm2d(128),
nn.LeakyReLU(0.2, inplace=True),
# 128 x 16 x 16 -> 256 x 8 x 8
nn.Conv2d(128, 256, 4, 2, 1, bias=False),
nn.BatchNorm2d(256),
nn.LeakyReLU(0.2, inplace=True),
# 256 x 8 x 8 -> 512 x 4 x 4
nn.Conv2d(256, 512, 4, 2, 1, bias=False),
nn.BatchNorm2d(512),
nn.LeakyReLU(0.2, inplace=True),
# 512 x 4 x 4 -> 1024 x 2 x 2
nn.Conv2d(512, 1024, 4, 2, 1, bias=False),
nn.BatchNorm2d(1024),
nn.LeakyReLU(0.2, inplace=True),
# 1024 x 2 x 2 -> 1 x 1 x 1
nn.Conv2d(1024, 1, 2, 1, 0, bias=False),
nn.Sigmoid()
)
def forward(self, x):
return self.model(x)
# ----------------------------
# 2. 生成器
# ----------------------------
class Generator(nn.Module):
def __init__(self, z_dim=100):
super(Generator, self).__init__()
self.model = nn.Sequential(
# z -> 1024 x 4 x 4
nn.ConvTranspose2d(z_dim, 1024, 4, 1, 0, bias=False),
nn.BatchNorm2d(1024),
nn.ReLU(True),
# 1024 x 4 x 4 -> 512 x 8 x 8
nn.ConvTranspose2d(1024, 512, 4, 2, 1, bias=False),
nn.BatchNorm2d(512),
nn.ReLU(True),
# 512 x 8 x 8 -> 256 x 16 x 16
nn.ConvTranspose2d(512, 256, 4, 2, 1, bias=False),
nn.BatchNorm2d(256),
nn.ReLU(True),
# 256 x 16 x 16 -> 128 x 32 x 32
nn.ConvTranspose2d(256, 128, 4, 2, 1, bias=False),
nn.BatchNorm2d(128),
nn.ReLU(True),
# 128 x 32 x 32 -> 3 x 64 x 64
nn.ConvTranspose2d(128, 3, 4, 2, 1, bias=False),
nn.Tanh()
)
def forward(self, z):
return self.model(z)
# ----------------------------
# 3. 数据集加载
# ----------------------------
transform = transforms.Compose([
transforms.Resize(64),
transforms.CenterCrop(64),
transforms.ToTensor(),
transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5))
])
dataset = ImageFolder(root='./data', transform=transform)
dataloader = DataLoader(dataset, batch_size=64, shuffle=True, num_workers=4)
# ----------------------------
# 4. 参数与设备
# ----------------------------
z_dim = 100
num_epochs = 100
lr = 0.002
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
# ----------------------------
# 5. 模型与优化器
# ----------------------------
d = Detector().to(device)
g = Generator(z_dim=z_dim).to(device)
criterion = nn.BCELoss()
optimizer_d = torch.optim.Adam(d.parameters(), lr=lr, betas=(0.5, 0.999))
optimizer_g = torch.optim.Adam(g.parameters(), lr=lr, betas=(0.5, 0.999))
# 固定噪声用于观察训练过程
z_fixed = torch.randn(64, z_dim, 1, 1, device=device)
# 创建保存目录
os.makedirs("results", exist_ok=True)
# ----------------------------
# 6. 训练循环
# ----------------------------
def train():
for epoch in range(1, num_epochs + 1):
loss_d_total, loss_g_total = 0, 0
for real_images, _ in tqdm(dataloader, desc=f"Epoch {epoch}/{num_epochs}", leave=False):
real_images = real_images.to(device)
B = real_images.size(0)
# 标签平滑(真实 = 0.9, 假 = 0.0
real_labels = torch.full((B, 1, 1, 1), 0.9, device=device)
fake_labels = torch.zeros((B, 1, 1, 1), device=device)
# 生成假图像
z = torch.randn(B, z_dim, 1, 1, device=device)
fake_images = g(z)
# 判别器训练
output_real = d(real_images)
output_fake = d(fake_images.detach())
loss_real = criterion(output_real, real_labels)
loss_fake = criterion(output_fake, fake_labels)
loss_d = loss_real + loss_fake
optimizer_d.zero_grad()
loss_d.backward()
optimizer_d.step()
# 生成器训练
output = d(fake_images)
loss_g = criterion(output, real_labels) # 欺骗D希望D输出真
optimizer_g.zero_grad()
loss_g.backward()
optimizer_g.step()
loss_d_total += loss_d.item()
loss_g_total += loss_g.item()
# 平均损失
avg_loss_d = loss_d_total / len(dataloader)
avg_loss_g = loss_g_total / len(dataloader)
print(f"Epoch [{epoch}/{num_epochs}] Loss_D: {avg_loss_d:.4f} Loss_G: {avg_loss_g:.4f}")
# 每5轮保存一次生成图像
if epoch % 5 == 0:
with torch.no_grad():
fake = g(z_fixed).detach().cpu()
utils.save_image(fake, f"results/epoch_{epoch}.png", normalize=True, nrow=8)
if __name__ == "__main__":
torch.multiprocessing.freeze_support() # ✅ Windows 兼容性
train() # 把训练过程封装成 main() 函数