Merge branch 'main' of https://huajishe.fun/git/e2hang/python
This commit is contained in:
		
							
								
								
									
										36
									
								
								Artificial-Intelligence/Conferences/readme.md
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										36
									
								
								Artificial-Intelligence/Conferences/readme.md
									
									
									
									
									
										Normal file
									
								
							@@ -0,0 +1,36 @@
 | 
			
		||||
好的,我帮你整理一个 **人工智能/机器学习方向的顶级学术会议表格** 📊,包含会议名称、全称、领域、主办机构、发布时间(每年举办时间)以及官网链接。这样你可以一眼掌握主要顶会。
 | 
			
		||||
 | 
			
		||||
| 序号 | 会议简称              | 全称                                                                   | 研究方向           | 主办方                                    | 举办时间   | 官网链接                                                                                           |
 | 
			
		||||
| -- | ----------------- | -------------------------------------------------------------------- | -------------- | -------------------------------------- | ------ | ---------------------------------------------------------------------------------------------- |
 | 
			
		||||
| 1  | NeurIPS           | Neural Information Processing Systems                                | 机器学习、深度学习、AI理论 | NeurIPS Foundation                     | 每年12月  | [https://neurips.cc](https://neurips.cc)                                                       |
 | 
			
		||||
| 2  | ICML              | International Conference on Machine Learning                         | 机器学习、统计学习、深度学习 | International Machine Learning Society | 每年7月   | [https://icml.cc](https://icml.cc)                                                             |
 | 
			
		||||
| 3  | ICLR              | International Conference on Learning Representations                 | 表征学习、深度学习      | ICLR                                   | 每年4月   | [https://iclr.cc](https://iclr.cc)                                                             |
 | 
			
		||||
| 4  | CVPR              | Computer Vision and Pattern Recognition                              | 计算机视觉、图像识别     | IEEE                                   | 每年6月   | [http://cvpr2025.thecvf.com/](http://cvpr2025.thecvf.com/)                                     |
 | 
			
		||||
| 5  | ICCV              | International Conference on Computer Vision                          | 计算机视觉          | IEEE / CVF                             | 每两年10月 | [https://iccv2025.org/](https://iccv2025.org/)                                                 |
 | 
			
		||||
| 6  | ECCV              | European Conference on Computer Vision                               | 计算机视觉          | Springer / CVF                         | 每两年8月  | [https://eccv2024.org/](https://eccv2024.org/)                                                 |
 | 
			
		||||
| 7  | ACL               | Annual Meeting of the Association for Computational Linguistics      | 自然语言处理、NLP     | ACL                                    | 每年7月   | [https://acl2025.org/](https://acl2025.org/)                                                   |
 | 
			
		||||
| 8  | EMNLP             | Conference on Empirical Methods in Natural Language Processing       | NLP、语言建模       | ACL                                    | 每年11月  | [https://2025.emnlp.org/](https://2025.emnlp.org/)                                             |
 | 
			
		||||
| 9  | NAACL             | North American Chapter of the ACL                                    | NLP            | ACL                                    | 每两年6月  | [https://naacl2024.org/](https://naacl2024.org/)                                               |
 | 
			
		||||
| 10 | AAAI              | AAAI Conference on Artificial Intelligence                           | 综合AI           | AAAI                                   | 每年2月   | [https://aaai.org/Conferences/AAAI-25/](https://aaai.org/Conferences/AAAI-25/)                 |
 | 
			
		||||
| 11 | IJCAI             | International Joint Conference on Artificial Intelligence            | 综合AI           | IJCAI                                  | 每两年8月  | [https://ijcai-25.org/](https://ijcai-25.org/)                                                 |
 | 
			
		||||
| 12 | KDD               | Knowledge Discovery and Data Mining                                  | 数据挖掘、机器学习应用    | ACM SIGKDD                             | 每年8月   | [https://www.kdd.org/](https://www.kdd.org/)                                                   |
 | 
			
		||||
| 13 | NeurIPS Workshops | NeurIPS Workshop Series                                              | AI前沿专题         | NeurIPS Foundation                     | 每年12月  | [https://neurips.cc/Conferences/2025/Workshops](https://neurips.cc/Conferences/2025/Workshops) |
 | 
			
		||||
| 14 | CVPR Workshops    | CVPR Workshop Series                                                 | 计算机视觉前沿专题      | IEEE / CVF                             | 每年6月   | [https://cvpr2025.thecvf.com/](https://cvpr2025.thecvf.com/)                                   |
 | 
			
		||||
| 15 | ICASSP            | International Conference on Acoustics, Speech, and Signal Processing | 信号处理、语音、音频     | IEEE                                   | 每年5月   | [https://2025.ieeeicassp.org/](https://2025.ieeeicassp.org/)                                   |
 | 
			
		||||
 | 
			
		||||
---
 | 
			
		||||
 | 
			
		||||
### 🔹 说明
 | 
			
		||||
 | 
			
		||||
1. **NeurIPS / ICML / ICLR** → ML/DL 核心理论和方法
 | 
			
		||||
2. **CVPR / ICCV / ECCV** → 计算机视觉顶会
 | 
			
		||||
3. **ACL / EMNLP / NAACL** → NLP 顶会
 | 
			
		||||
4. **AAAI / IJCAI** → 综合 AI(覆盖 RL、搜索、规划等方向)
 | 
			
		||||
5. **KDD / ICASSP** → 应用、数据挖掘、信号处理方向
 | 
			
		||||
6. **Workshops** → 顶会的专题分会,通常更前沿、更实验性
 | 
			
		||||
 | 
			
		||||
---
 | 
			
		||||
 | 
			
		||||
我可以帮你再做一个 **“AI顶会关注清单 + 每年必看论文推荐”表格**,把每个会议的最新高引用论文/重要论文列出来,这样你可以系统追踪最前沿进展。
 | 
			
		||||
 | 
			
		||||
你希望我帮你做这个吗?
 | 
			
		||||
							
								
								
									
										410
									
								
								Artificial-Intelligence/readme.md
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										410
									
								
								Artificial-Intelligence/readme.md
									
									
									
									
									
										Normal file
									
								
							@@ -0,0 +1,410 @@
 | 
			
		||||
有的 👍
 | 
			
		||||
如果你想系统地进入 **AI / 深度学习**,我可以帮你梳理一条比较清晰的学习路径,从数学基础 → 编程技能 → 深度学习核心 → 工程应用 → 前沿方向。
 | 
			
		||||
 | 
			
		||||
---
 | 
			
		||||
 | 
			
		||||
# 🎯 AI 学习路径(推荐顺序)
 | 
			
		||||
 | 
			
		||||
## 📐 阶段 1:数学与计算机基础
 | 
			
		||||
 | 
			
		||||
这些是地基,不要跳过:
 | 
			
		||||
 | 
			
		||||
* **线性代数**(矩阵运算、特征值、奇异值分解)
 | 
			
		||||
  👉 推荐《线性代数及其应用》(Strang)
 | 
			
		||||
* **概率论与统计**(分布、期望、贝叶斯公式)
 | 
			
		||||
  👉 《概率论与数理统计》(浙大版)
 | 
			
		||||
* **微积分**(导数、偏导、多元函数、梯度)
 | 
			
		||||
  👉 《Thomas 微积分》
 | 
			
		||||
* **数值优化**(梯度下降、牛顿法、凸优化)
 | 
			
		||||
  👉 Boyd《Convex Optimization》(进阶)
 | 
			
		||||
* **计算机基础**
 | 
			
		||||
 | 
			
		||||
  * Python 编程(必须)
 | 
			
		||||
  * 数据结构与算法(树、图、动态规划)
 | 
			
		||||
  * Linux 基础(环境配置、命令行操作)
 | 
			
		||||
 | 
			
		||||
---
 | 
			
		||||
 | 
			
		||||
## 🤖 阶段 2:机器学习基础
 | 
			
		||||
 | 
			
		||||
先学“传统机器学习”,再进深度学习:
 | 
			
		||||
 | 
			
		||||
* **核心概念**
 | 
			
		||||
 | 
			
		||||
  * 监督/无监督/强化学习
 | 
			
		||||
  * 过拟合、正则化、交叉验证
 | 
			
		||||
* **常见算法**
 | 
			
		||||
 | 
			
		||||
  * 线性回归、逻辑回归
 | 
			
		||||
  * 决策树、随机森林、XGBoost
 | 
			
		||||
  * 支持向量机(SVM)
 | 
			
		||||
  * K-means、PCA
 | 
			
		||||
* **教材**
 | 
			
		||||
 | 
			
		||||
  * 周志华《机器学习》(西瓜书)
 | 
			
		||||
  * Andrew Ng 机器学习课程(Coursera)
 | 
			
		||||
 | 
			
		||||
---
 | 
			
		||||
 | 
			
		||||
## 🧠 阶段 3:深度学习核心
 | 
			
		||||
 | 
			
		||||
* **基本神经网络**
 | 
			
		||||
 | 
			
		||||
  * MLP、激活函数、反向传播
 | 
			
		||||
* **训练技巧**
 | 
			
		||||
 | 
			
		||||
  * 优化器(SGD, Adam, RMSprop)
 | 
			
		||||
  * 学习率调度、BatchNorm、Dropout
 | 
			
		||||
* **常见网络**
 | 
			
		||||
 | 
			
		||||
  * CNN(图像)
 | 
			
		||||
  * RNN / LSTM / GRU(序列)
 | 
			
		||||
  * Transformer(NLP / 通用)
 | 
			
		||||
* **框架实战**
 | 
			
		||||
 | 
			
		||||
  * PyTorch(主流,科研)
 | 
			
		||||
  * TensorFlow(工程/生产)
 | 
			
		||||
    👉 推荐《Deep Learning with PyTorch》
 | 
			
		||||
 | 
			
		||||
---
 | 
			
		||||
 | 
			
		||||
## 🏗️ 阶段 4:AI 工程与实践
 | 
			
		||||
 | 
			
		||||
* **数据处理**:Numpy、Pandas、Matplotlib、Scikit-learn
 | 
			
		||||
* **深度学习工具**:PyTorch Lightning, HuggingFace Transformers
 | 
			
		||||
* **实验管理**:Weights & Biases, MLflow
 | 
			
		||||
* **部署与优化**
 | 
			
		||||
 | 
			
		||||
  * ONNX, TensorRT
 | 
			
		||||
  * GPU/TPU 加速
 | 
			
		||||
  * 模型压缩(剪枝、量化)
 | 
			
		||||
 | 
			
		||||
---
 | 
			
		||||
 | 
			
		||||
## 🚀 阶段 5:前沿与方向选择
 | 
			
		||||
 | 
			
		||||
根据兴趣进入某个子领域:
 | 
			
		||||
 | 
			
		||||
* **计算机视觉 (CV)**
 | 
			
		||||
 | 
			
		||||
  * CNN, ViT, Stable Diffusion
 | 
			
		||||
* **自然语言处理 (NLP)**
 | 
			
		||||
 | 
			
		||||
  * Transformer, BERT, GPT
 | 
			
		||||
* **强化学习 (RL)**
 | 
			
		||||
 | 
			
		||||
  * DQN, PPO, AlphaGo
 | 
			
		||||
* **多模态 (Vision+Language)**
 | 
			
		||||
 | 
			
		||||
  * CLIP, LLaVA
 | 
			
		||||
* **系统 & 加速**
 | 
			
		||||
 | 
			
		||||
  * 分布式训练 (DDP, DeepSpeed)
 | 
			
		||||
  * 大模型训练 (LoRA, SFT, RAG)
 | 
			
		||||
 | 
			
		||||
---
 | 
			
		||||
 | 
			
		||||
# 📚 学习资源推荐
 | 
			
		||||
 | 
			
		||||
1. **课程**
 | 
			
		||||
 | 
			
		||||
   * CS229(Stanford 机器学习)
 | 
			
		||||
   * CS231n(Stanford 计算机视觉)
 | 
			
		||||
   * DeepLearning.ai(Andrew Ng 深度学习专项)
 | 
			
		||||
2. **书**
 | 
			
		||||
 | 
			
		||||
   * 《Deep Learning》(花书,Goodfellow)
 | 
			
		||||
   * 《动手学深度学习》(李沐,MXNet/PyTorch 版)
 | 
			
		||||
   * 《Dive into Deep Learning》(D2L)
 | 
			
		||||
3. **实战平台**
 | 
			
		||||
 | 
			
		||||
   * Kaggle
 | 
			
		||||
   * Papers with Code
 | 
			
		||||
 | 
			
		||||
---
 | 
			
		||||
 | 
			
		||||
# ✅ 路线总结
 | 
			
		||||
 | 
			
		||||
1. 数学 & Python 基础
 | 
			
		||||
2. 传统机器学习 → 西瓜书
 | 
			
		||||
3. 深度学习 → PyTorch + 李沐课程
 | 
			
		||||
4. 工程化 → Lightning / HuggingFace
 | 
			
		||||
5. 根据兴趣选择方向(CV / NLP / RL / 多模态)
 | 
			
		||||
 | 
			
		||||
---
 | 
			
		||||
 | 
			
		||||
要不要我帮你画一个 **AI 学习路线图(流程图形式)**,让你一眼就能看到每个阶段学什么?
 | 
			
		||||
 | 
			
		||||
这是一个好问题 👍。如果你是要走 **AI(尤其是深度学习)学习路径**,有一些模型和论文几乎是绕不开的“必修课”。我给你分层次整理一下:
 | 
			
		||||
 | 
			
		||||
---
 | 
			
		||||
 | 
			
		||||
## 🌱 入门必修模型 & 论文
 | 
			
		||||
 | 
			
		||||
这些是深度学习的“地基”,建议一定要通读或至少理解核心思想:
 | 
			
		||||
 | 
			
		||||
* **感知机 (Perceptron)** → 经典的神经网络起点。
 | 
			
		||||
 | 
			
		||||
  * 论文: Rosenblatt, 1958. *The Perceptron*
 | 
			
		||||
* **BP 神经网络** → 反向传播算法。
 | 
			
		||||
 | 
			
		||||
  * 论文: Rumelhart et al., 1986. *Learning representations by back-propagating errors*
 | 
			
		||||
* **卷积神经网络 (CNN)** → 图像识别奠基。
 | 
			
		||||
 | 
			
		||||
  * 论文: LeCun et al., 1998. *Gradient-based learning applied to document recognition (LeNet)*
 | 
			
		||||
* **深度CNN爆发**
 | 
			
		||||
 | 
			
		||||
  * AlexNet (2012, ImageNet冠军,奠定深度学习热潮)
 | 
			
		||||
 | 
			
		||||
    * Krizhevsky et al., *ImageNet Classification with Deep Convolutional Neural Networks*
 | 
			
		||||
 | 
			
		||||
---
 | 
			
		||||
 | 
			
		||||
## 🚀 核心模型(深度学习必学)
 | 
			
		||||
 | 
			
		||||
* **VGGNet** (2014) → 网络加深的里程碑
 | 
			
		||||
* **ResNet** (2015) → 残差结构,极大缓解深层网络训练问题
 | 
			
		||||
 | 
			
		||||
  * He et al., *Deep Residual Learning for Image Recognition*
 | 
			
		||||
* **RNN / LSTM / GRU** (1997 / 2014) → 处理序列数据(语言、时间序列)
 | 
			
		||||
 | 
			
		||||
  * Hochreiter & Schmidhuber, *Long Short-Term Memory*
 | 
			
		||||
* **Seq2Seq (Encoder-Decoder)** (2014) → 机器翻译框架
 | 
			
		||||
 | 
			
		||||
  * Sutskever et al., *Sequence to Sequence Learning with Neural Networks*
 | 
			
		||||
 | 
			
		||||
---
 | 
			
		||||
 | 
			
		||||
## 🌐 里程碑模型(现代AI基石)
 | 
			
		||||
 | 
			
		||||
* **Attention / Transformer (2017)**
 | 
			
		||||
 | 
			
		||||
  * Vaswani et al., *Attention Is All You Need*
 | 
			
		||||
  * → 这是NLP和大模型的分水岭
 | 
			
		||||
* **BERT (2018)** → 预训练语言模型奠基
 | 
			
		||||
 | 
			
		||||
  * Devlin et al., *BERT: Pre-training of Deep Bidirectional Transformers*
 | 
			
		||||
* **GPT系列 (2018–2020)** → 大规模语言建模路线
 | 
			
		||||
 | 
			
		||||
  * Radford et al., *Improving Language Understanding by Generative Pre-Training*
 | 
			
		||||
* **Vision Transformer (ViT, 2020)** → Transformer进军图像
 | 
			
		||||
 | 
			
		||||
  * Dosovitskiy et al., *An Image is Worth 16x16 Words*
 | 
			
		||||
 | 
			
		||||
---
 | 
			
		||||
 | 
			
		||||
## 🧠 应用和前沿
 | 
			
		||||
 | 
			
		||||
* **GAN (2014)** → 图像生成奠基
 | 
			
		||||
 | 
			
		||||
  * Goodfellow et al., *Generative Adversarial Networks*
 | 
			
		||||
* **Diffusion Models (2020)** → Stable Diffusion、DALL·E 的理论基础
 | 
			
		||||
 | 
			
		||||
  * Ho et al., *Denoising Diffusion Probabilistic Models*
 | 
			
		||||
* **RL + Deep Learning**
 | 
			
		||||
 | 
			
		||||
  * Mnih et al., 2015. *Human-level control through deep reinforcement learning* (DQN)
 | 
			
		||||
  * Silver et al., 2016. *Mastering the game of Go with deep neural networks and tree search* (AlphaGo)
 | 
			
		||||
 | 
			
		||||
---
 | 
			
		||||
 | 
			
		||||
## 📖 建议阅读顺序
 | 
			
		||||
 | 
			
		||||
1. **基础** → Perceptron, BP, LeNet, AlexNet
 | 
			
		||||
2. **CV发展** → VGG, ResNet
 | 
			
		||||
3. **NLP发展** → RNN, LSTM, Seq2Seq
 | 
			
		||||
4. **新时代** → Transformer, BERT, GPT
 | 
			
		||||
5. **生成式AI** → GAN, Diffusion
 | 
			
		||||
6. **强化学习结合深度学习** → DQN, AlphaGo
 | 
			
		||||
 | 
			
		||||
---
 | 
			
		||||
 | 
			
		||||
要是你目标是 **科研/学术方向**,Transformer 及其变体的论文是绝对必须深入研究的;如果目标是 **工程应用**,ResNet、BERT 和 Diffusion 模型的应用落地很关键。
 | 
			
		||||
 | 
			
		||||
要不要我帮你画一张 **AI学习路径思维导图**,从数学基础到关键论文和模型都串起来?这样看起来更清晰。
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
好,我来帮你整理一个比较系统的 **AI经典论文阅读清单** 📚。我会按主题 + 时间线排序,每一篇都标出标题、作者、年份和推荐理由。这样你可以有条理地去读,不至于迷失。
 | 
			
		||||
 | 
			
		||||
---
 | 
			
		||||
 | 
			
		||||
# 🔑 AI 经典论文阅读列表
 | 
			
		||||
 | 
			
		||||
## 1. 基础阶段(神经网络起点)
 | 
			
		||||
 | 
			
		||||
1. **Rosenblatt, 1958. *The Perceptron: A Probabilistic Model for Information Storage and Organization in the Brain***
 | 
			
		||||
   👉 神经网络最早的雏形。
 | 
			
		||||
2. **Rumelhart, Hinton & Williams, 1986. *Learning representations by back-propagating errors***
 | 
			
		||||
   👉 反向传播算法奠基,现代深度学习的起点。
 | 
			
		||||
3. **LeCun et al., 1998. *Gradient-based learning applied to document recognition*** (LeNet-5)
 | 
			
		||||
   👉 第一个成功的卷积神经网络,用于手写数字识别。
 | 
			
		||||
4. **Krizhevsky, Sutskever & Hinton, 2012. *ImageNet Classification with Deep Convolutional Neural Networks*** (AlexNet)
 | 
			
		||||
   👉 ImageNet 冠军,深度学习热潮的导火索。
 | 
			
		||||
 | 
			
		||||
---
 | 
			
		||||
 | 
			
		||||
## 2. CV 发展(卷积神经网络进阶)
 | 
			
		||||
 | 
			
		||||
5. **Simonyan & Zisserman, 2014. *Very Deep Convolutional Networks for Large-Scale Image Recognition*** (VGGNet)
 | 
			
		||||
   👉 网络加深后的代表作,结构清晰。
 | 
			
		||||
6. **He et al., 2015. *Deep Residual Learning for Image Recognition*** (ResNet)
 | 
			
		||||
   👉 引入残差结构,极大缓解深度网络训练问题,必读。
 | 
			
		||||
 | 
			
		||||
---
 | 
			
		||||
 | 
			
		||||
## 3. NLP 发展(序列模型)
 | 
			
		||||
 | 
			
		||||
7. **Hochreiter & Schmidhuber, 1997. *Long Short-Term Memory*** (LSTM)
 | 
			
		||||
   👉 解决长序列梯度消失问题,RNN 的核心改进。
 | 
			
		||||
8. **Cho et al., 2014. *Learning Phrase Representations using RNN Encoder–Decoder for Statistical Machine Translation*** (GRU, Seq2Seq雏形)
 | 
			
		||||
   👉 GRU提出,Encoder-Decoder架构出现。
 | 
			
		||||
9. **Sutskever, Vinyals & Le, 2014. *Sequence to Sequence Learning with Neural Networks*** (Seq2Seq)
 | 
			
		||||
   👉 奠定了机器翻译等任务的 Encoder-Decoder 框架。
 | 
			
		||||
 | 
			
		||||
---
 | 
			
		||||
 | 
			
		||||
## 4. 新时代(Attention 与预训练)
 | 
			
		||||
 | 
			
		||||
10. **Bahdanau et al., 2015. *Neural Machine Translation by Jointly Learning to Align and Translate***
 | 
			
		||||
    👉 第一次提出 Attention 机制。
 | 
			
		||||
11. **Vaswani et al., 2017. *Attention Is All You Need*** (Transformer)
 | 
			
		||||
    👉 NLP 进入 Transformer 时代的标志。
 | 
			
		||||
12. **Devlin et al., 2018. *BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding***
 | 
			
		||||
    👉 双向 Transformer 预训练模型,NLP 各项任务全面突破。
 | 
			
		||||
13. **Radford et al., 2018. *Improving Language Understanding by Generative Pre-Training*** (GPT-1)
 | 
			
		||||
    👉 GPT 系列开端,大规模自回归语言建模路线。
 | 
			
		||||
14. **Brown et al., 2020. *Language Models are Few-Shot Learners*** (GPT-3)
 | 
			
		||||
    👉 大规模语言模型展示“少样本学习”能力,LLM 爆发起点。
 | 
			
		||||
15. **Dosovitskiy et al., 2020. *An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale*** (ViT)
 | 
			
		||||
    👉 Transformer 成功应用于图像任务。
 | 
			
		||||
 | 
			
		||||
---
 | 
			
		||||
 | 
			
		||||
## 5. 生成式 AI(图像/文本生成)
 | 
			
		||||
 | 
			
		||||
16. **Goodfellow et al., 2014. *Generative Adversarial Nets*** (GAN)
 | 
			
		||||
    👉 生成模型革命的起点。
 | 
			
		||||
17. **Radford et al., 2015. *Unsupervised Representation Learning with Deep Convolutional Generative Adversarial Networks*** (DCGAN)
 | 
			
		||||
    👉 GAN 第一个成功的大规模版本。
 | 
			
		||||
18. **Ho et al., 2020. *Denoising Diffusion Probabilistic Models*** (DDPM)
 | 
			
		||||
    👉 扩散模型的起点,Stable Diffusion、DALL·E 的理论基础。
 | 
			
		||||
 | 
			
		||||
---
 | 
			
		||||
 | 
			
		||||
## 6. 强化学习 + 深度学习
 | 
			
		||||
 | 
			
		||||
19. **Mnih et al., 2015. *Human-level control through deep reinforcement learning*** (DQN)
 | 
			
		||||
    👉 Atari 游戏的里程碑,强化学习和深度学习结合。
 | 
			
		||||
20. **Silver et al., 2016. *Mastering the game of Go with deep neural networks and tree search*** (AlphaGo)
 | 
			
		||||
    👉 将深度学习、强化学习与搜索结合,震惊世界。
 | 
			
		||||
 | 
			
		||||
---
 | 
			
		||||
 | 
			
		||||
# ✅ 阅读建议
 | 
			
		||||
 | 
			
		||||
* **第一轮快速扫读**:掌握核心模型的思路和创新点(建议先看 ResNet, Transformer, BERT, GAN, Diffusion, AlphaGo)。
 | 
			
		||||
* **第二轮精读**:带代码实现,结合 PyTorch/现有开源代码跑实验。
 | 
			
		||||
* **第三轮拓展**:读相关的 survey 论文,形成整体脉络。
 | 
			
		||||
 | 
			
		||||
---
 | 
			
		||||
 | 
			
		||||
要不要我帮你把这些论文分成一个 **12个月的学习计划**,比如每个月读 2–3 篇,从基础到前沿逐步过渡?这样你可以循序渐进,而不是一下子全压上。
 | 
			
		||||
 | 
			
		||||
要了解 **最前沿的人工智能方向**,关键是关注 **最新论文、预印本、会议动态和开源项目**。我帮你梳理一下几大主流渠道和方法:
 | 
			
		||||
 | 
			
		||||
---
 | 
			
		||||
 | 
			
		||||
## 1️⃣ 学术论文与预印本(科研前沿)
 | 
			
		||||
 | 
			
		||||
### arXiv(预印本)
 | 
			
		||||
 | 
			
		||||
* **网址**: [https://arxiv.org](https://arxiv.org)
 | 
			
		||||
* **推荐板块**:
 | 
			
		||||
 | 
			
		||||
  * cs.AI → 人工智能总览
 | 
			
		||||
  * cs.LG → 机器学习
 | 
			
		||||
  * cs.CV → 计算机视觉
 | 
			
		||||
  * cs.CL → 自然语言处理
 | 
			
		||||
* **特点**: 速度快,几乎所有最新成果都会先在这里发布。
 | 
			
		||||
* **技巧**:
 | 
			
		||||
 | 
			
		||||
  * 关注 “recent” 选项,每天/每周查看最新论文。
 | 
			
		||||
  * 使用 RSS 或 arXiv-sanity(下文)订阅感兴趣领域。
 | 
			
		||||
 | 
			
		||||
### arXiv-sanity(作者:Andrej Karpathy)
 | 
			
		||||
 | 
			
		||||
* [http://www.arxiv-sanity.com/](http://www.arxiv-sanity.com/)
 | 
			
		||||
* 功能:按照热门度和关键字推荐最新论文,便于快速筛选高质量工作。
 | 
			
		||||
 | 
			
		||||
---
 | 
			
		||||
 | 
			
		||||
## 2️⃣ 顶级 AI/ML 学术会议(最具权威性)
 | 
			
		||||
 | 
			
		||||
这些会议的论文代表了领域前沿:
 | 
			
		||||
 | 
			
		||||
* **NeurIPS (Neural Information Processing Systems)**
 | 
			
		||||
  → ML 和深度学习最顶尖会议
 | 
			
		||||
* **ICLR (International Conference on Learning Representations)**
 | 
			
		||||
  → 表征学习、深度学习新方法
 | 
			
		||||
* **ICML (International Conference on Machine Learning)**
 | 
			
		||||
  → ML 各类前沿研究
 | 
			
		||||
* **CVPR / ICCV / ECCV**
 | 
			
		||||
  → 计算机视觉顶会
 | 
			
		||||
* **ACL / EMNLP / NAACL**
 | 
			
		||||
  → NLP 顶会
 | 
			
		||||
* **AAAI / IJCAI**
 | 
			
		||||
  → 综合人工智能会议
 | 
			
		||||
 | 
			
		||||
### 查看方式
 | 
			
		||||
 | 
			
		||||
* 直接访问官网,会有论文列表和 PDF 下载
 | 
			
		||||
* 或用 [paperswithcode.com](https://paperswithcode.com/) 查看带实现的最新论文
 | 
			
		||||
 | 
			
		||||
---
 | 
			
		||||
 | 
			
		||||
## 3️⃣ 开源社区与项目
 | 
			
		||||
 | 
			
		||||
前沿成果往往伴随开源代码:
 | 
			
		||||
 | 
			
		||||
* **GitHub Trending / Stars**
 | 
			
		||||
  → 关注 “transformers”, “diffusion”, “RL”, “multi-modal” 等关键字
 | 
			
		||||
* **HuggingFace Transformers Hub**
 | 
			
		||||
  → NLP 和多模态模型最新实现
 | 
			
		||||
* **OpenAI / Stability AI / Meta AI / DeepMind**
 | 
			
		||||
  → 官方开源项目,通常是最新研究的落地版
 | 
			
		||||
 | 
			
		||||
---
 | 
			
		||||
 | 
			
		||||
## 4️⃣ 社交媒体与信息聚合
 | 
			
		||||
 | 
			
		||||
* **Twitter / X**(AI研究人员、实验室账号)
 | 
			
		||||
  → 跟踪 Andrej Karpathy, Yann LeCun, OpenAI, DeepMind 等
 | 
			
		||||
* **Reddit / r/MachineLearning**
 | 
			
		||||
  → 每天有论文分享、讨论和解读
 | 
			
		||||
* **LinkedIn / WeChat 公众号**(国内 AI 前沿)
 | 
			
		||||
  → 比如“量子位”、“深度之眼”等科技公众号
 | 
			
		||||
 | 
			
		||||
---
 | 
			
		||||
 | 
			
		||||
## 5️⃣ 工具和订阅
 | 
			
		||||
 | 
			
		||||
* **Feedly / RSS** → 订阅 arXiv 或顶会动态
 | 
			
		||||
* **Papers with Code** ([https://paperswithcode.com/](https://paperswithcode.com/))
 | 
			
		||||
  → 论文 + 代码 + benchmark,方便实践
 | 
			
		||||
* **AI Report / Distill.pub**
 | 
			
		||||
  → 可视化解读最新研究,降低理解门槛
 | 
			
		||||
 | 
			
		||||
---
 | 
			
		||||
 | 
			
		||||
### 🔑 总结
 | 
			
		||||
 | 
			
		||||
1. **论文** → arXiv + 顶会
 | 
			
		||||
2. **代码** → GitHub + HuggingFace
 | 
			
		||||
3. **趋势** → 社交媒体 / RSS / AI 社区
 | 
			
		||||
4. **实践** → Papers with Code + 开源项目跑实验
 | 
			
		||||
 | 
			
		||||
---
 | 
			
		||||
 | 
			
		||||
如果你愿意,我可以帮你整理一个 **AI 前沿监控表格或 RSS/关注清单**,把 **每天/每周必须看/关注的渠道和账号**列出来,这样你可以系统追踪最新研究。
 | 
			
		||||
 | 
			
		||||
你希望我帮你做这个吗?
 | 
			
		||||
		Reference in New Issue
	
	Block a user